
Astronomy 596/496 NPA Spring 2005
Final Problem Set

Due at or before 5 pm, Monday December 14: No extensions!

This problem set is open book, open notes, and open web, but you are not to consult
with anyone else.

1. Gamma-Rays from Cosmic Rays.

(a) Make an estimate of the radius of the Galactic disk, and of our distance from
the center. Then use the equation of γ-ray radiation transfer to predict the
ratio of the γ-ray flux toward the Galactic center (ℓ = 0) to the flux towards the
anticenter (ℓ = 180◦), both measured along the Galactic plane (b = 0). Figure 2c
of Hunter, S.D., et al. 1997, ApJ, 481, 205 shows φγ(ℓ, b) for ranges in Galactic
latitude and longitude at 300–1000 MeV. How well do the data from the central
band (b < 2◦) agree with your prediction?

(b) Find the minimum energy (i.e., the threshold) for a cosmic ray proton to produce
a pion via collisions with ISM hydrogen: pp→ppπ0.

(c) With the advent of CGRO a longstanding debate regarding cosmic ray origins
was put to rest. It was argued in class that most cosmic rays (i.e., certainly
those below ∼ 100 TeV) are Galactic in origin. However, this point was not
always widely accepted, and into the 1960’s the possibility of an extragalactic
(also called “metagalactic”) cosmic-ray origin was considered viable. We can test
this hypothesis by calculating the γ-ray flux from the Small Magellanic Cloud
(SMC) in this model. To do this, assume that the cosmic ray flux measured at
earth reflects a single universal (metagalactic) value. The pp→ppπ0 cross section
is in fact a strong function of energy, but for now use a mean value of σγ

pp = 8
mb, appropriate for cosmic ray energies above the value shown in part (b); note
that for each π0, two γ-rays are created. The SMC gas mass is measured to
be MSMC = 6.4 × 108M⊙, and its distance is 60 kpc. Using this information,
compute the expected γ-ray flux from the SMC, assuming it is effectively a point
source given the resolution of the CGRO.

(d) Compare your prediction in (c) with the observed upper limit on the SMC γ-ray
flux, Φγ < 4 × 10−8 photons cm−2 s−1 (Lin, Y.C., et al. 1996, ApJS, 105, 331).
Can you rule out a metagalactic origin for cosmic rays?

2. Neutrino Oscillations. Observations of solar neutrinos are consistent with νe − νx

oscillations which are best fit by the LMA solution having ∆m2
21 ≃ 8×10−5 eV2, and

tan2 θ ≃ 0.47. This solution has potential implications for observations of atmospheric
neutrinos. For the following, assume a two-species solution is appropriate.

(a) For atmospheric νe with energy Eν = 1 GeV, what is the vacuum oscillation
length Lmax at which the νe disappearance is maximum?

(b) What is the maximum distance actually traveled by atmospheric neutrinos?
(Note that R⊕ = 6400 km.) For 1 GeV atmospheric νe which travel this distance,
find the fraction which “disappear,” given the favored LMA solution.
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(c) The situation is in fact more complicated than suggested by part (b), since
we are dealing with νe oscillations and thus, as for the Sun, we are obliged to
consider matter effects as well. Use the resonance condition for MSW oscillations
in matter to find the required density ρcrit = muncrit

e ≃ 2ρ for this resonance
condition to hold for a 1 GeV νe. If this density is obtained within the earth,
then the MSW effect can be important and must be included in a full analysis.

3. SN 1987A and Neutrino Mass. Using the SN 1987A neutrino signal–in particular, its
time and energy dispersion–one can infer an interesting limit on the neutrino mass.

(a) Let us assume that the neutrinos are ultrarelativistic; we will verify the consis-
tency of this assumption. Given this, find an expression for the neutrino speed
v in terms of its (total) energy E and rest mass m ≪ E.

(b) Use the result from (a) to show that for one neutrino detection event, the (lab
frame) elapsed time between emission and observation is

tobs − tem ≃ t0

(

1 +
m2

2E2

)

(1)

where t0 = DLMC/c is the light travel time. Using this, show that for two
neutrino events, with energies E1 and E2, their differences in travel times are

∆tobs − ∆tem ≃
t0m

2

2
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1
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)

(2)

where ∆tobs is the time between detections and ∆tem is the time between emis-
sion.

(c) The observed spread of neutrino arrival times is ∆tobs ≃ 12 s. Assume for
simplicity (but not realistically!) that all of the neutrinos are emitted simulta-
neously: ∆tem = 0. The detected energy range goes from about 8 to 40 MeV.
If we attribute all of the time structure as due to neutrino mass effects (i.e.,
all νe’s have the same mass, but the faster ones arrive first), use these data to
infer a limit on the neutrino mass. You make take DLMC = 50 kpc. Was the
assumption of ultrarelativistic neutrinos justified? How does your limit compare
with laboratory limits on the νe mass?

4. Neutrino Oscillations and Nonbaryonic Dark Matter. Although we do not know neu-
trino masses, we have enough information from various laboratory experiments to
make an important statement about the cosmic neutrino density. For simplicity, we
will assume for this problem that m1 < m2 < m3; this is not guaranteed but is the
same pattern the quark and lepton masses follow and thus is known as the “normal
hierarchy.”

(a) As we have discussed, oscillation experiments measure only the magnitude of the
mass-square difference between neutrino species, i.e., solar neutrinos and related
laboratory experiments measure ∆m2

12 = m2
2 − m2

1, and atmospheric neutrinos
measure ∆m2

23 = m2
3 − m2

2. Show why we do not need a new experiment to
independently measure ∆m2

13. Given current values of ∆m2
12 = 8 × 10−5 eV2

and ∆m2
23 = 2 × 10−3 eV2, find the value of ∆m2

13.
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(b) Imagine that we knew the value of one neutrino mass, say m1, and all of the
∆m2. Show that in this case, you can recover the values of m2 and m3. That is,
give expressions for m2 and m3 that depend only on m1 and the ∆m2.

(c) Explain why the values of the ∆m2 cannot give us any of the mass m1,m2,m3.
To do this, show that in your result in part (b), if m1 is not already fixed, then
we can only set a lower limit on the other neutrino masses. Find expression for
the lower limits on m2 and m3. Finally, combine these to find an expression for
a resulting lower limit mmin

ν,tot on the sum mν,tot =
∑

i mi of the neutrino masses.

(d) Laboratory results from nuclear decays set limits on the combination of mass
states which make up the νe flavor state; for simplicity let us oversimplify and
take these resutls to set the upper limit mmax

1 < 1 eV.

Given mmax
1 , and your result from part (b), compute an upper limit to m2 and

m3, and an upper limit mmax
ν,tot to the sum of the neutrino masses.

(e) You showed in Problem Set 4 that the cosmic neutrino mass density parameter
is given by

Ων =

∑

i mν,i

46 eV
=

mν,tot

46 eV
(3)

Using your results from parts (c) and (d), compute both a lower and upper limit
to Ων .

(f) You should have found that your upper limit gives Ων ≪ Ωm, i.e., the neutrino
density is much less than the matter density. Briefly explain the importance of
this result for particle physics and for cosmology.


