
Astronomy 596/496 NPA Fall 2009
Problem Set #2

Due in class: Friday, Sept. 25

1. Quantum Tunneling and the Coulomb Barrier.

(a) We first consider barrier penetration in one dimension. For the potential

V (x) =

{

0 x < 0
V0 = const > 0 x > 0

(1)

Solve the Schrödinger equation for a particle of mass m in this potential and
having energy E < V0. Show that for x > 0, the wavefunction is ψ(x) =
ψ(0)e−kx with the wavenumber k =

√

2m(V0 − E)/h̄. Thus conclude that in
this model the probability to penetrate a distance x in this potential is P (x >
0) = P (0) e−2kx.

(b) Now we generalize to the 2-body Coulomb problem. Find Rcl, the classical
radius of closest approach (“turnaround radius”) given the particle’s energy E
and charge Z, for the case of zero angular momentum (i.e., for purely radial
motion).

(c) In a complete quantum calculation (which we won’t do) the radial portion of
wavefunction is similar to the 1-D case, but now V (r) 6= constant. Thus we
should expect a wavenumber k = k(r). One can show (by solving the Coulomb
wavefunction or using the WKB approximation), that |ψ(r)|2 = |ψ(∞)|2 exp(−2πη)
where the exponential is the generalization of the previous expression

2πη = 2

∫ Rcl

R
dr k(r) (2)

In solving the integral, you may find it useful to note that
∫

dx

√

a

x
− b =

a

2
√
b

(

sin−1 u+
√

1 − u2
)

(3)

where u = (2bx/a)−1. If you are skeptical, or you are an integration jock, please
feel free to verify this or to ignore this and do the integral your own way.

We will be interested in the case in which the radius R at which we need to tunnel
(i.e., the radius of the nuclear force, which is essentially the nuclear radius) is
far inside the classical turnaround radius Rcl. That is, we want the case in
which R≪ Rcl. Show that this condition is equivalent to the statement that the
Coulomb barrier EC = Z1Z2e

2/R at the nucleus is much larger than the particle
energy center-of-mass energy E.

For this limiting case, show that

2πη ≈ 2πZ1Z2e
2

h̄v
(4)

This is usefully written in terms of energy as P (E) = e−bE−1/2

, as we saw in
class. Find b in terms of Z1, Z2, A1, A2, and physical constants.
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2. Thermonuclear Lifetimes: Lithium in the Sun. 7Li in the Sun can be destroyed,
mainly via the 7Li(p, α)4He reaction. The thermonuclear rates for these reaction can
be found in compilations on the web; for this problem I recommend the NACRE
(2000) compilation which appears on the course links page. Note that rates are
tabulated as NAvo〈σv〉, in units cm3 s−1 g−1, and T9 = T/109 K.

(a) Estimate the temperature Tburn at which 7Li is destroyed in the Sun–i.e., find
T such that the mean life for 7Li against destruction is ≤ t⊙ ≃ 5 Gyr. Take an
average solar density of ρ̄ = 1.4 g cm−3, and hydrogen mass fraction X⊙ ∼ 0.7.
How does Tburn compare to the central temperature of the Sun, Tc,⊙ = 16× 106

K? Hint: You may find that the tabulated rates are too sparse to get a good
estimate, in which case you should use the analytic expression given. Don’t be
afraid to approximate: while the analytical rate expression is complicated, note
that for temperatures T9 ≪ 1, it simplifies something manageable.

(b) From your handy Anders & Grevesse abundance chart, find the difference be-
tween photospheric and meteoritic Li abundance. In light of the results above,
discuss possible implications of the discrepancy for the nature of the Sun.

3. Conservation Laws. Consider the following processes. For each reaction, state whether
the reaction is allowed or forbidden, according to the conservation laws we have dis-
cussed. If the reaction is forbidden, indicate which law(s) are violated. If the reaction
is allowed, indicate if it is endothermic or exothermic. (Refer to the Particle Data
Group webpage for particle masses; you may take mν = 0.)

(a) p+ γ→p+ π0

(b) ν̄τ + τ−→µ− + ν̄µ

(c) π− + p→n+ π0

(d) π+ + n→p

4. The Friedmann Equation. The Friedmann equation governs ȧ, while the Friedmann
acceleration equation governs ä. Take the time derivative of the Friedmann equation
and show that the Friedmann acceleration equation (with pressure!) holds if we have
d(εa3) = −p d(a3), where ε = ρc2 is the cosmic energy density; i.e., we see that energy
conservation or the First Law of Thermodynamics holds.

5. A Matter-Dominated Universe. The simplest and most intuitive cosmological model
is for a flat universe whose density is dominated by that of non-relativistic matter.
Hwere we will study this important case, known as the Einstein–de Sitter universe or
matter-dominated universe, in detail.

(a) Consider a matter-dominated universe, with present mass density ρ0. For such
a universe, use (but do not solve!) the Friedmann equation to find the present
value H0 of the Hubble parameter in terms of ρ0 and physical constant(s).

(b) Now solve the Friedmann equation to find a(t), subject to the boundary con-
ditions a(0) = 0 and a(t0) = 1. In doing this, you should find a relationship
between t0 and H0, and thus between t0 and ρ0.
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(c) Sketch or plot a(t). Physically interpret this behavior in terms of the history
and fate of the universe.

Find the cosmic acceleration ä/a. Interpret your result (and it’s sign!) physically.

Finally, find Ω(t) in this model, and interpret your result physically.

(d) Find H(t) and z(t) for a matter-dominated universe. Is the Hubble “constant”
aptly named in this model? If not, describe and physically interpret the evolution
of H(t). What is the age of a matter-dominated universe at z = 1, expressed
in terms of t0? What is the redshift at which such a universe is at 10% of its
present age?

(e) Find ρ(t), and interpret the behavior physically. Show that you can express your
answer entirely in terms of t and physical constant(s).

(f) Using the current best measured value of H0, find t0 for a matter dominated
universe. Compare your answer to the age of the Earth, and also to the age of
the oldest stars (gobular clusters): tgc ≥ 12 Gyr. Comment on the implications
of this comparison.


