
Astronomy 596/496 NPA Fall 2009
Problem Set #4

Due: Friday, October 23

1. Probing Physics with BBN: Variations in Fundamental Constants. Late in his career,
Dirac postulated that Newton’s gravitational constant GN may evolve with cosmic
time. This idea has recently received a great deal of attention since (1) some quantum
gravity theories (including versions of string theory) predict evolution in fundamental
“constants,” and (2) observations of metal lines in quasar absorption systems seem
to suggest that at z ∼ 3, the fine structure constant α differs from its current value
by a tiny but nonzero amount: δαz=3/αz=0 ∼ −1 × 10−5.

Consider the case of changing GN (but no change in the fine-structure constant or
anything else). Namely, imagine that at the time of BBN, GN were different from its
present value G0, by some amount δG; i.e., at BBN, we have G = G0 + δG. Much as
in the “neutrino counting” argument discussed in class, we can use light elements to
probe δG in the early universe.

(a) In the neutrino counting discussion in class (and in the Director’s Cut Extras)
we saw how adding δNν = Nν − 3 extra neutrio species leads to an increase in
the primordial 4He abundance (mass fraction) δYp. Now let’s fix Nν = 3 as in
Standard BBN, but now allow for δG 6= 0. If during BBN we had δG > 0, would
this lead to an increase or decrease in the primordial 4He abundance? Explain
your reasoning.

(b) As discussed in class, in case where ∆Nν 6= 0 and δG = 0, the effect of adding
neutrinos is to change the expansion rate, which ultimately affects Yp. Now look
at our case in which ∆Nν = 0 and δG 6= 0, and explain why here again, the
resulting effect is to change the expansion rate. Go on to explain why we can
relate the two cases (extra neutrinos vs modified gravity strength) via

7

4

(

δNν

gstd
∗

)

G=G0

=

(

δG

G0

)

Nν=Nstd
ν

=3

(1)

where gstd
∗

is the pre-freezeout effective number of relativistic degrees of freedom
in Standard BBN, and G0 is standard laboratory value today. Hint: compare
the perturbation δH/H to the expansion rates in the two cases.

(c) As shown by, e.g., Cyburt, Fields, Olive, & Skillman (2005), the WMAP mea-
surement of η can be combined with BBN theory and observations of deuterium
to constrain Nν (in the case of δG = 0). Use this limit, Nν < 4.44 at the 95%
CL, and the result from part (b) to deduce a bound on δG/G0 at the time of
BBN (in the case of Nν = 3). What is this limit? Comment on your result.

2. The Planck Mass.

(a) In (special) relativity, a particle of mass m has a characteristic energy scale,
mc2, associated with it, and an characteristic momentum scale mc. In quantum
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mechanics there is a natural length scale associated with a particle of momentum
p, namely the de Broglie wavelength λ ∼ h̄/p. One thus arrives at a lengthscale
associated with relativistic quantum effects, namely the Compton wavelength
λc = h̄/mc. At length scales at or smaller than this, one expects relativistic
quantum effects to be important, and in fact this is how we calculated the range
of forces mediated by massive bosons (e.g., the weak force).

In (classical) General Relativity, there is a natural length scale associated with a
body of mass m, namely rgr ∼ Gm/c2 (this is half of the so-called Schwarzschild
radius) . For the known fundamental particles, it turns out that rSch ≪ λc,
which means that one may ignore General Relativity when describing them.
However, if a particle had a mass m such that rSch = λc, one would need a
full General Relativistic quantum theory to describe the particle–i.e., quantum

gravity. This mass scale is known as the Planck mass MPl. Calculate MPl and
give its value in energy units of GeV. Also calculate the associated Planck time
and Planck length. These correspond to the temperature, age, and size of the
Universe before which quantum gravity effects must be included, and thus mark
the extreme edge of applicability of current (non-quantum-gravity) theories.

(b) Verify that in natural units, for a radiation-dominated universe, we have an
expansion rate H ∼ T 2/MPl.

3. Hot Relics: Neutrinos. Assume that the known neutrino species (e, µ, τ) have masses
such that m≪ 1 MeV, but m≫ T0.

(a) In class we considered cold relics, for which Tf ≪ m. Neutrinos, however, are hot
relics. If species ψ has Tf ≫ m and µψ = 0, find the thermodynamic equilibrium
abundance Yeq(x).

(b) For all species of neutrinos, the annihilation cross section is of the same order as
the n↔ p cross section you derived in the last problem set: σann ≃ σ0(E/me)

2.
Use this to estimate an expression for 〈σv〉ann as a function of T and of x = mν/T .

(c) Using the result from (b), find the neutrino freezeout temperature xf . If each
species i has mass mi, find its present relic abundance (assuming it is non-
relativistic today, mν ≫ T0).

(d) Use the result from (c) to show that the condition Ων ≤ 1 corresponds to a limit
on neutrino mass,

∑

neutrinos

mi <∼ 100 eV (2)

How does this compare to Particle Data Group constraints on neutrino masses?

4. Cold Relics: A Gut Feeling for WIMP Abundances. Compute the local mass density
ρ0 ≡ ρw(R0) of WIMPs at the Sun’s Galactocentric radius R0 ∼ 10 kcp Assume
that the Galactic rotation curve (circular speed V vs R) is “flat” at and around our
location, i.e., V (R) = V0 ≃ 220 km/s. (Along the way, you will want to use Gauss’
law to find the mass M(R) inside R.) You should find ρ0 ≃ 0.3 GeV cm−3. If WIMPs
have a mass mw ∼ 100 GeV, estimate the average number of WIMPs in your body
at any given time.
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5. Cold Relics: WIMP Detection. In class we saw that particles with annihilation cross
sections σann ∼ 10−36 cm2 are attractive candidates for non-baryonic dark matter. If
these WIMPs are indeed the dark matter, there is much knowledge and profit to be
gained by detecting them. In this problem, we will assume that the Galactic dark
matter is in the form of WIMPs, and examine two methods for discovering them.

Please answer at least one of these two; if you answer the other, it will be a bonus

point.

(a) The center of our Galaxy is where the dark matter density should be the highest.
The nature of the dark matter density profile at the Galactic center is highly
controversial, but for simplicity we will use the famous Navarro-Frenk-White
(NFW; 1997 ApJ 490, 493) profile:

ρ(r) = ρ0
β

r/R0(1 + αr/R0)2
(3)

where α = 3.7, and β = (1+α)2. Note that while the central density is formally
divergent, the enclosed mass M(r) is finite as r→0. We will be interested in the
inner Galaxy (r <∼ R0/α), where we can approximate ρ(r) ≃ βρ0R0/r.

The WIMP annihilation rate per unit volume is qann = σannvn
2
w. Estimate the

WIMP speed v using the circular speed V (r), and use this to calculate the total
annihilation rate Ṅann =

∫

q(r)d3r for the inner Galaxy.

Then assume the annihilations go to photons (γ-rays). Taking the inner Galaxy
to be a point source to γ-rays, estimate the annihilation photon flux (by num-
ber) Φγ at Earth. The recently-launched Fermi Gamma-Ray Space Telescope

measures γ rays with energies ∼ 30 MeV to ∼ 300 GeV, and has point source
sensitivity of Φmin,Fermi ≃ 10−9 cm−2 s−1. Do you expect WIMP annihilations
to be observable by Fermi? What could we learn about the properties of WIMPs
if an annihilation signal were observed by Fermi?

(b) Terrestrial WIMP experiments are sensitive to WIMP-nucleon scattering events,
rather than annihilations. These occur due to the WIMP flux Φw ≃ nw,0V0

through the Earth. Given a detector of mass Mdet made of nuclei of mass
number A, and a WIMP-nucleus scattering cross section σW−A, show that the
total scattering event rate A in the detector scales linearly with the detector
mass: A ∝ Mdet. Thus a detector-independent quantity1 is the rate per unit
mass, R = A/Mdet. Find an expression for R, and evaluate it for the case when
σW−A = σann, for a WIMP mass mw ∼ 100 GeV and for an iodine detector with
A ∼ 100. Express your results in units of [events day−1 kg−1].

Current detector capabilities can probe event rates of about 0.03events day−1 kg−1.
Comment on the ability of these detectors to detect a WIMP signal. In fact, no
signal is seen; what does this imply for the WIMP interaction strength σW−A?

1In fact, this is independent of the detector mass, but can and does depend on the detector composition
(A), since it is expected that some nuclei are more favorable for WIMP detection than others.


