
Astronomy 596/496 NPA Fall 2009
Problem Set #5
Due: Friday, Nov. 6

1. Neutrino Oscillations: Two-Flavor Approximation. Here we will get a sense of the
workings of neutrino flavor change by looking at a system where there are two neutrino
flavor states (call them |νe〉 and |νx〉), which are weak eigenstates (i.e., eigenstates of
the weak Hamiltonian). What this means is that

〈νe|νe〉 = 〈νx|νx〉 = 1 and 〈νe|νx〉 = 〈νx|νe〉 = 0 (1)

On the other hand, there are two mass states |ν1〉 and |ν2〉, which are vacuum eigen-
states (i.e., eigenstates of the vacuum Hamiltonian), so that

〈ν1|ν1〉 = 〈ν2|ν2〉 = 1 and 〈ν1|ν2〉 = 〈ν2|ν1〉 = 0 (2)

The weak eigenstates are not mass eigenstates. Thus it is not meaningful to speak of
the masses of the flavor states, only of the mass states.

A general neutrino quantum state can be expressed as a superposition of the two
flavor states, or of the two mass states. That is, the pair of flavor states and the pair
of mass states each can serve as a basis for the generic neutrino state. This is similar
to the case of a spin-1/2 particle, where a general spin state can be expressed as a
superposition of “up” and “down” states or of “left” and “right” states.

(a) We wish to understand the relationship between flavor and mass states. Accord-
ing to the rules above, we may generally write, for any instant of time,

|νe〉 = a|ν1〉 + b|ν2〉 (3)

|νx〉 = c|ν1〉 + d|ν2〉 (4)

where u = a, b, c, d are time-independent numbers that describe the “mixing” of
mass and flavor states; we may take a, b, c, d to be real. If flavor states were mass
eigenstates, what would be the values of a, b, c, d? In light of this, what is the
physical significance of each of the (universal) dimensionless constants a, b, c, d?

Also show that the normalization conditions for |νe〉 and |νx〉 give a2 + b2 = 1
and c2 + d2 = 1.

(b) Now rewrite eqs. (3) and (4) to solve for |ν1〉 and |ν2〉. You should find

|ν1〉 =
d

ad − bc
|νe〉 −

b

ad − bc
|νx〉 (5)

|ν2〉 = −
c

ad − bc
|νe〉 +

a

ad − bc
|νx〉 (6)

Then show that the normalization conditions for |ν1〉 and |ν2〉 give ad − bc = 1,
as well as a2 + c2 = 1 and b2 + d2 = 1. Consequently we find a = d and b = −c.
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(c) In light of part (b), show that it is possible to write

(

a b

c d

)

=

(

cos θ sin θ

− sin θ cos θ

)

(7)

What is the connection between θ, a, and b? The angle θ is not one in physical
space, but what is its physical significance?

(d) Using eq. (7), and following class notes, show that the general time dependence
of the flavor states is

|νe〉t = cos θe−iE1t/h̄|ν1〉t=0 + sin θe−iE2t/h̄|ν2〉t=0 (8)

and similarly for |νx〉.

(e) Now find the probability Pνe→νe
(L) that a neutrino born as a νe in a weak

interaction at the origin is detected as a νe after traveling in vacuum over a
distance L ≈ ct. Verify that the result is the oscillatory expression given in
class.

(f) All of this hifalutin theory now needs to be compared with experiment. In Japan,
KamLAND (see links from lecture pages) measures reactor (anti)neutrinos which
travel a mean disance L ∼ 180 km. Their most recent results are summarized
in Abe et al.: KamLAND Collaboration (2008) Phys. Rev. Lett., 100, 221803;
arXiv:0801.4589). From Figure 1 of Abe et al., make an estimate of their
measured value of Pνe→νe

at Eν = 3 MeV and Eν = 6 MeV. Using these (and
more data points if you wish), estimate ∆m2

12 and sin2 2θ, noting that these are
the same for antineutrinos as for their neutrino counterparts.

How does your estimate compare to their advertized result? How does your esti-
mate compare with the parameters needed to solve the solar neutrino problem?

2. SN 1987A: Light Curve and Nucleosynthesis. Bouchet et al. (1991 A&A 245, 490) sum
the UV, optical, and IR light curves for SN1987A to arrive at a bolometric light curve.
These appear in their Table 6 and Figure 3, where we see that in late times (i.e., after
about 140 days), the supernova dimmed in a manner that is roughly linear in the
semi-log plot. This trend encodes important information about iron nucleosynthesis
in SN 1987A.

(a) Show that the late-time light curve can be well-fit to the form L(t) = L(0) e−t/τ .
Use the data to estimate the L(0) and the time constant τ . Remember that the
luminosity is given in the form of base 10 logs. Both of your fit parameters have
a story to tell.

(b) At late times, it is expected that the energy source powering the supernova
comes from the decay of 56Ni. This decay takes two steps, first 56Ni→56Co, then
56Co→56Fe. Each step involves a β-decay, usually into an excited state of the
daughter nucleus which then γ-decays to the ground state. Show that at late
times, we need only consider the 56Co decay. Then compare the observed time
constant τ from part (a) with the 56Co mean life τ56 (not half-life!). Comment
on the results.
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(c) Assuming that at late times, the supernova is powered entirely by 56Co decay, use
L(0) from part (a) to infer the 56Ni (and ultimately 56Fe) yield of SN 1987A. Note
that the energy released per decay depends on the details of how the β-decay
proceeds (electron capture versus e+ emission) and into which excited 56Fe

∗
state

the decay goes. To make a long story short, it turns out that the mean energy
release per decay (not in the form of neutrinos) is about 3.8 MeV. Using this,
you should find a 56Fe yield close to the now-canonical result, mej,Fe ∼ 0.07M⊙.

(d) Bonus: You may notice that at times after about 300 days, the light curve is not
perfectly exponential, but falls too rapidly. In other words, despite the presence
of decaying 56Co, not all of its energy is powering the light curve. What might
be going on?


