Astro 596/496 NPA Lecture 2 Aug. 26, 2009

Announcements:

- Pick up: Syllabus, handy abundance table
- PF 1 due Fri. Sept. 2, \leq 12noon
- ASTR 596/496 APA: The Art and Practice of Astronomy begins today, 4 pm, here

Last time: overview

Now: begin content

 \vdash

Program Notes: ASTR 596/496 NPA Bugs/Features

notes online—but come to class! some people find it convenient to print 4 pages/sheet

▷ class ∈ diverse backgrounds: ask questions!

Socratic questions

typos/sign errors
 Dirac story
 please report errors in lectures and problem sets

Ν

Slices of the Cosmic Pie

We want to use physics to understand the nature and history of cosmic matter

To place in context:

(looking ahead to results we haven't derived)

Q: what are the main components of the universe today?

Q: which is the dominant component, and by how much?

www: Cosmic Pie Chart

Observables for Nuclear and Particle Astrophysics

To be a science: must have empirical evidence

 \rightarrow need observable data to reveal/test cosmic matter history

Seek observables which:

- probe nature of cosmic constituents
- reveal history of cosmic matter
- * indicate nuke/particle interactions have taken place.

Q: What are some? (no peeking at notes)

▶ *Q:* Compare observables list to cosmic pie chart. Comments?

Observables for Nuclear and Particle Astrophysics

Observable	Example
direct matter detection	cosmic rays
neutrinos	solar, supernova neutrinos
high-energy photons	X-rays, γ -rays
abundances: elemental & isotopic	Sun, Galactic stars
dark matter	direct detection, annihilation prod
dark energy	cosmic acceleration

Note: the dominant cosmic components today

are the *hardest* to track observationally!

will look at all observables

but central to both nuclear and particle astrophysics:

the baryonic universe

σ

Baryons: Praise Them or Bury Them?

recall: **baryon** \rightarrow proton, neutron \rightarrow nuclei \rightarrow atoms ...formal definition to come...

baryons are tiny fraction of cosmic matter today and an even smaller fraction of total cosmic mass-energy

and (at least some) baryons are not exotic with (fairly) well-understood physics

Q: so why would a particle astrophysicist study cosmic baryons?

In Defense of Baryons

 \star because we know much about baryonic physics

> both micro (particle, nuclear, atomic)

and macro (hydrodynamics, condensed matter) baryons show how particle properties are manifest in cosmo/astro context

 \Rightarrow good training for dark matter, dark energy

 \star lessons:

detailed picture of how baryonic microphysics determines cosmic properties and shapes cosmic events

see how unexpected and complex phenomena emerge

→ we are baryons!
 baryonic history is our history!

Central Baryonic Observable: Abundances

a key tracer of cosmic particle history and *the* key tracer of cosmic nuclear history is baryonic *composition* \Rightarrow **abundances**

Q: where can we measure abundances?

Observable Abundances

Sun, solar system MW Galaxy: stars, ISM, cosmic rays External galaxies: ISM, stars Intergalactic medium at high, low redshift

Solar System Abundances: "Rosetta Stone"

- www: SS mass fractions
- www: SS isotopic abundances
- 6 Q: what strikes you?

Solar System Abundances: Trends

- impressive scale abundance variation by 12 decades!
- zig-zag
- dropoff towards high masses
- peaks, esp iron, also in very heavy elements (Pt, Pb)
- dip: LiBeB
- ...Will unpack this by the end of the course

Q: where measured?

Where measured?

Sun

- photosphere
- only elemental abundances
 (sum over isotopes) Q: why?

Meteors

12

- most primitive: carbonaceous chondrites
- much more precise abundances, and get isotope info
- but only measure "refractory" elts (condense readily) can't measure "volatile" (gaseous/hard to condense) e.g., H, He, C, N, O, Ne, Ar

Q: so how can we put both on same scale?

Q: what is physical significance of SS abs?

Solar Abundances: Physical Significance

Strictly:

SS abundances \Rightarrow matter at Sun birth record of all nuclear processing and mixing of that material

Broadly:

Sun \sim typical Pop I (Milky Way disk) star

 \Rightarrow expect similar patterns in nearby disk stars

Practically:

serve as benchmark, fiducial standard (much as Sun is a standard, e.g., L_{\odot} and M_{\odot})

13

Quantifying Abundances

```
see Arnett, Ch. 1
```

composition quantified via

abundance \equiv ratio of species *i* to some standard

usually "species" = element or isotope

in choosing how to quantify: want abundance changes to reflect nuclear/high-energy transformations, but to be invariant under compression Q: why?

14

consider a sample of (bayronic) matter

- (total) mass density: ho
- mass density of species *i*: ρ_i
- number density of species *i*: n_i

note: $\sum_i \rho_i = \rho$

 $\rho_i = m_i n_i$, $m_i = mass$ of one nucleus/atom

these quantify sample composition

but: not good as abundance measures

- Q: why?
- *Q*: what would be better?

compression invariance \Rightarrow take *ratio*

of density to density of conserved quantity:

- mass density (if non-relativistic)
- baryon number density n_B

again: "baryon" = proton or neutron a nucleus with N neutrons, Z protons has baryon number A = N + Zand baryon number density $n_{B,i} = A_i n_i$

Useful (theoretical) abundance measures of species i:

mass fraction: $X_i = \rho_i / \rho$ mole fraction: $Y_i = n_i / n_B$ note: traditional astronomers mass fraction shorthand:

 $X_{H} = X$ $X_{He} = Y$ $X_{other} = Z$ "metallicity" e.g., famous "metals" like C, N, O, ... normalization: X + Y + Z = 1observe/infer: solar system value $X_{\odot} \simeq 0.70, Y_{\odot} \simeq 0.28, Z_{\odot} \simeq 0.02$

but for astrophysical sources, can't directly measure n_i or ρ_i *Q: what do we measure?* direct astrophysical composition observables: spectra from emission/absorption lines, measure column densities $N_i \simeq \int_{mfp} n_i \ d\ell$

observers report ratios $N_i/N_j \simeq n_i/n_j$ Q: what assumed in \simeq ?

 $\frac{10}{8}$

usually normalize to H (most abundant) $A_i/H \equiv N_i/N_H \simeq n_i/n_H$ e.g., solar system mean (Fe/H) $_{\odot} = 3.2 \times 10^{-5}$

```
For SS isotopes: arbitrarily normalize to Si (10<sup>6</sup>)
as in your handy table of abundances
www: SS abs plot
```