Astro 596/496 NPA
 Lecture 3
 Aug. 28, 2009

Announcements:

- PF 1 posted due Fri. Sept. 2, ≤ 12 noon

Last time: abundances
Q: top 3 cosmic components?
Q : top solar system elements?
www: solar system abundances
clear patterns, features in solar system composition want to understand how these patterns came about

- we will see: these patterns represent
a symphony of cosmic and stellar processes

Nuclear Physics

Nuclear Physics

atomic nuclei make of nucleons $=$ protons and neutrons

nucleon	mass	spin	charge		
proton	$m_{p} c^{2}=938 \mathrm{MeV}$	$S_{p}=1 / 2$	$Q_{p}=\left\\|Q_{e}\right\\|=e$		
neutron	$m_{n} c^{2}=m_{p} c^{2}+1.3 \mathrm{MeV}$	$S_{n}=1 / 2$	$Q_{n}=0$		

consider a nucleus with Z protons, N neutrons mass number $A=Z+N$
Q : baryon number?
notation: ${ }_{N}^{A} x^{Z}$
but usually use shorthand, because:
${ }_{\omega}$ chemical symbol $\mathrm{X} \Rightarrow Z$, then can get $N=A-Z$
e.g., ${ }_{1}^{3} \mathrm{He}^{2} \rightarrow{ }^{3} \mathrm{He}$
"nuclide" $=$ a particular (Z, N) combination (strictly, and a particular energy state)
www: chart of the nuclides - note axes
isobar: fixed A (e.g., ${ }^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$)
isotope: fixed Z (e.g., ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$)
isotone: fixed N (e.g., ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{O}$)
Q: any Simpson's fans?

Q: isobar/tope/tone patterns on nuclide chart?

Nuclear Masses

to zeroth order:
mass of nucleus $=A \times$ "nucleon mass"
to make this idea precise, define atomic mass unit (amu):

$$
\begin{aligned}
m_{\mathrm{u}} & =\frac{m\left({ }^{12} \mathrm{C}\right)}{12}=\frac{1 \mathrm{~g}}{N_{\mathrm{A}} \mathrm{~mol}}=1.66 \times 10^{-24} \mathrm{~g} \\
& =931.5 \mathrm{MeV} / c^{2} \simeq 1 \mathrm{GeV} / c^{2} \\
& \simeq m_{p} \simeq m_{n}
\end{aligned}
$$

(neutral atom mass: includes $6 m_{e} c^{2}$)
now define: mass excess (or mass defect)

$$
\begin{align*}
\Delta_{i}= & \left(m_{i}-A_{i} m_{u}\right) c^{2} \tag{1}\\
& \uparrow \text { neutral atom mass } \tag{2}
\end{align*}
$$

e.g., $\Delta\left({ }^{12} \mathrm{C}\right)=0$ Q: why?
$\Delta\left({ }^{16} \mathrm{O}\right)=-4.737 \mathrm{MeV}$
$\Delta\left({ }^{1} \mathrm{H}\right)=7.289 \mathrm{MeV}$
www: wallet card
Q : why are mass defects $\neq 0$ for all but ${ }^{12} \mathrm{C}$?

Nuclear Binding Energy

binding energy: for nuclide i

$$
\begin{align*}
B_{i} & =\text { parts - whole } \tag{3}\\
& =\left(Z_{i} m_{H} c^{2}+N_{i} m_{n} c^{2}\right)-m_{i} c^{2} \tag{4}
\end{align*}
$$

stability requires $B_{i}>0$, i.e., whole $<$ sum of parts
(c.f., $m_{H}=m_{p}+m_{e}-13.6 \mathrm{eV} / c^{2}$)

Q: why?
www: Chart of nuclides - note valley of stability
note that larger nuclei have large B_{i}, but shared among more nucleons, so invent:
binding energy per nucleon B_{i} / A_{i}
www: Great curve of nuclear binding energy
Q : what strikes you?

Binding Energy: Trends and Consequences

Nuclear binding energy features:

- sharp rise in B_{i} / A_{i} at low A
- local max at ${ }^{4} \mathrm{He}$
- no stable nuclei at $A=5,8$
- Iowest B / A for D , LiBeB
- $\max B / A$ for middle masses: peak at ${ }^{56} \mathrm{Fe}$
with this in mind, revisit solar abundances:
www: SS abundances

Q: significance?

The Nuclear Fingerprint in Solar Abundances

Many observed features in solar abundances reflect observed features in nuclear binding energy curve
for example:

* D, Li, Be, B are "fragile": weakly bound-low B / A but these also have very low abundances
\star binding has broad peak around ${ }^{56} \mathrm{Fe}$
...where abundances show a broad peak

See nuclear BE effects in SS
(and stellar) abundances:
\Rightarrow confirms: abundance pattern controlled by nuclear physics!
\bullet
but atoms have their own binding too...
Q: why can't abundance pattern be due to atomic binding?

Nuclei vs Atoms

Useful to compare/contrast nuclear vs atomic interactions and structures

Q: controlling forces/interaction(s) in each?

Q: nuke/atomic similarities?

Q: nuke/atomic differences?

Properties of the Nuclear Force

EM force completely understood via Maxwell's equations and QED
for static point charges: simple potential $V(r)=Q / r$

- central force
- always either attractive or repulsive

Nuclear force not fully understood, much more complicated (see, e,g., Krane, Nuclear Physics)

- nuclear interaction and nucleons not fundamental but manifestations of strong interactions among quarks analogy: EM force vs molecular interactions
- nucleon-nucleon $(N-N)$ potential not known from first principles: empirical

The Nuclear Force

- $N-N$ interaction attractive a "large" distances $\gtrsim 1 \mathrm{fm}$, strongly repulsive at short distances $\lesssim 1 \mathrm{fm}$
$\rightarrow 0$ at $\sim 1 \mathrm{fm}$
- $N-N$ interaction strongly spin-dependent
e.g., $d=n p$ exists only as $J=1(p \uparrow n \uparrow)$, $n o t J=0(p \uparrow n \downarrow)$
\Rightarrow have $\vec{s}_{1} \cdot \vec{s}_{2}$ terms in $N-N$ potential
- $N-N$ potential has non-central "tensor" term anisotropic, angle average $=0$
- $N-N$ force charge symmetric:
$n-n$ interaction $=p-p$ aside from Coulomb effects
$\bullet N-N$ nearly charge independent: $V_{n n} \simeq V_{p p} \simeq V_{n p}$

