Astro 596/496 NPA Lecture 4 Aug. 31, 2009

Announcements:

 \bullet PF 1 posted due this Friday, ${\leq}12noon$

Last time: began nuke physics, binding energies *Q: evidence for nuclear physics in solar abs?*

Q: why are nuclear interactions complex, compared to E&M?

Nuclear Richness = **Complexity** A Look Ahead to Particle Physics

nucleons *not* fundamental particles

but bound states of quarks and gluons

 \Rightarrow nuke force really an interaction among complex objects (baryons, mesons) with substructure

Analogy: Chemistry

ultimately controlled by E&M,

but via *atoms*: many-body quantum structures in principle, can calculate atomic/molecular structure, reactions, scattering *ab initio* but in practice exceedingly difficult. Yet can do chemistry anyway: notice patterns & useful approximations

Ν

take similar approach to nuke physics.

Nuclear Density and Degeneracy

consider nuclear density: empirically-nearly constant for all nuclei number density $n = A/Vol = 0.17 \text{ fm}^{-3}$, or $\rho = M/Vol \simeq 0.2 \text{ GeV fm}^{-3} \simeq 3 \times 10^{14} \text{ g cm}^{-3}$

nucleons are fermions:

must obey Pauli principle \rightarrow important if *degeneracy* occurs but *does* it occur?

Q: how to estimate if nuclei are degenerate?

ω

to test for degeneracy \Rightarrow estimate Fermi energy i.e., energy that nucleon "gas" would have if packed together as much as Pauli allows

if degenerate: $xp_x \sim \hbar$ and also y, z: if packed into length x, minimal momentum is "Fermi momentum" $p_F \sim \hbar/x$

so for nuclus with size $r \sim 1A^{1/3}$ fm (1 fm = 10⁻¹³ cm) Fermi momentum $p_F \sim h/r \sim 2\pi\hbar/r$ Fermi energy $E_F = p_F^2/2m_u \sim 20 - 40 \ A^{-2/3}$ MeV

Q: what should this be compared with? \square Q: what do we conclude? compare to actual nuclear energy level spacings www: energy level diagram for $^{12}\mathrm{C}$

we find

$$E_F > E_{\text{nuke level}} \sim 1 \text{ MeV}$$
 (1)
 $E_F > E_{\text{EM}} \sim 1.4Z^2 \text{MeV}/r_{\text{fm}}$ (2)

i.e., typical nucleon energies are *below* Fermi level \Rightarrow to zeroth order, the nucleus is a degenerate gas of nucleons confined by the strong force

Note: since $n \sim A/r^3 =$ constant, nuclear radius scales as $r \simeq 1.2 A^{1/3}$ fm

СЛ

Mass Formula

goal: understand bulk nature of nuclei binding energy curve, nature of valley of stability

want to know binding energy of nuclides:

$$B(A, N, Z) =? \tag{3}$$

approach: make a rough model of nucleus, use to find functional form; then use mass data to fill in parameters:

"semi-empirical mass formula"

a.k.a., "semi-unbelievable mass formula"

 $_{\infty}$ (pioneered by on Wiezäcker \rightarrow "wise-acre mass formula")

identify effects:

$$BE(A, N, Z) = E_v + E_s + E_c + E_{sym} + E_{pair} + E_{shell}$$
(4)

• volume energy:
$$E_V \propto V \propto A$$
:
 $E_v = b_v A$; $b_v \simeq 15.5 \text{ MeV}$
not $E_v \propto \#$ pairs = $A(A - 1) \sim A^2$
 \Rightarrow "saturation" due to short-range nuke force

• surface effect: fewer neighbors

$$E_s \propto -r^2$$

 $\rightarrow E_s = -b_s \ A^{2/3}; \ b_s \simeq 16.8 \ \text{MeV}$

• Coulomb repulsion: reduces binding

→
$$E_c \sim -Z(Z-1)e^2/r$$

→ $E_C = -b_c \ Z(Z-1)A^{-1/3}$; $b_c \simeq 0.72 \text{ MeV}$

so far: "liquid drop model" - ignored quantum effects

• Symmetry: since degen. fermi gas, cheapest when N = Z: $E_{sym} \propto -|excess| \sim (Z - N)^2/A$ $\Rightarrow E_{sym} = -b_{sym} (Z - N)^2/A; \quad b_{sym} \simeq 23 \text{ MeV}$

•Pairing: Pauli \rightarrow identical nucleons pair off with opposite spins

$$E_p = \begin{cases} +\delta & N \text{ even } -P \text{ even } (A \text{ even}) \\ 0 & \text{odd-even} & (A \text{ odd}) \\ -\delta & N \text{ odd } -P \text{ odd} & (A \text{ even}) \end{cases}$$
(5)

where $\delta = b_p A^{-3/4}$; $a_p \sim 34$ MeV (1) odd-odd nuclei rare (2) odd A less bound than even A

00

Q: consequences for SS abs? www: SS abundances

Nuclear Physics Encoded in Solar Abundances II: The Odd-Even Effect

Recall: plotting abundance vs A

"zig-zag" is odd-even A effect

 \Rightarrow more confirmation that

nuclear physics controls solar abundances

Finally: include quantum periodic effects $E_{shell} = ?$ need model

Nuclear Shell Model

in atoms:

quantum states \rightarrow electronic shells \rightarrow periodic behavior

for certain "magic Z": closed shell \rightarrow tightly bound electrons

 \Rightarrow unusually stable atoms (e.g., noble gases)

in nuclei:

also quantum states

expect shell behavior, but not necessarily same numerology

for each nucleon:

- (1) approximate force by all other nucleons as a central potential
- (2) Schrödinger's eq. \rightarrow energy levels & occupation numbers
- (3) filled levels \rightarrow closed shell
 - \rightarrow very tight binding
- occur for special values of N and Z

"magic numbers"

10

Transp: Pagel, Fig 2.2, Infinite well and 3DHO levels magic numbers: Z = 2, 8, 20, 40, 82N = 2, 8, 20, 50, 82, 126www: solar abundances vs A and vs N

```
especially stable if doubly magic:
i.e., both N and Z are magic
{}^{4}He, {}^{16}O, {}^{40}Ca, {}^{90}Zr, {}^{208}Pb
```

Note: because ⁴He $\equiv \alpha$ doubly magic \rightarrow very tightly bound (1) light nuclei which have N = Z = even are tightly bound, " α " nuclei e.g., ¹²C, ¹⁶O, ²⁰Ne, ..., ⁴⁰Ca www: SS abs ² (2) A = 5 and A = 8 unstable: decay to $\alpha + N$ and $\alpha + \alpha$ \rightarrow "mass gaps" at A = 5, 8 essential for history of universe

Nuclear Decays

Some nuclei unstable \rightarrow spontaneous decay Three Decay Modes:

12

α: release ⁴He = α
e.g., ²³⁸U→ ²³⁴Th + α
decay via nuclear interaction, *nucleons reshuffled*

β:
$$(N,Z) \rightarrow (N \mp 1, Z \pm 1) + e + \nu$$
 ($e = β$)
decay via weak interaction: *nucleon type changed*, ν present
e.g., $β^-$: tritium decay ${}_2^3$ H¹→ ${}_1^3$ He² + $e^- + \bar{\nu}_e$
($\bar{\nu}_e$ = anti-neutrino)
i.e., have $n \rightarrow p + e^- + \bar{\nu}_e$
 $β^+$ example: 17 F→ 16 O + $e^+ + \nu_e$
i.e., have $p \rightarrow n + e^+ + \nu_e$

 γ : de-excite, emit photon γ decay via EM int. (*same nucleus*) e.g., excited ²⁶Mg^{*} \rightarrow ²⁶Mg^{g.s.} + γ $E_{\gamma} = E_{\text{excited}} = 1.8 \text{ MeV}$

- Q: which decays change A?
- Q: which decays change Z?
- Q: β^- path on chart of nuclides? β^+ ?