Astro 596/496 NPA
 Lecture 5 Sept. 2, 2009

Announcements:

- PF 1 due Friday ≤ 12 noon see tips on next slide
- World-famous cosmologist in the house!

Paul Steinhardt, Princeton
"The Endless Universe"
Physics Colloquium tomorrow, 4pm Loomis 141

Last time: nuclear structure and decays

Q: decay modes?

Q: radioactive decay time behavior?

Tips for PF1 Optional Reading (Asplund et al 2005)

Abundance Notation

very commonly used

$$
\begin{equation*}
[A / B] \equiv \log _{10}\left[\frac{(A / B)_{\text {observed }}}{(A / B)_{\text {solar system }}}\right] \tag{1}
\end{equation*}
$$

e.g.,: if a star has $\mathrm{Fe} / \mathrm{H}_{\star}=0.01 \mathrm{Fe} / \mathrm{H}_{\odot}$, then $[\mathrm{Fe} / \mathrm{H}]_{\star}=-2$
note: $[A / B]$ is a logarithmic measure of abundance
i.e., $[A / B]$ is a "decimal exponent
\rightarrow really dimensionless, but "units" sometimes called "dex"
also used

$$
\begin{equation*}
[A]=12+\log _{10}(A / \mathrm{H})=\log _{10}\left(10^{12} A / \mathrm{H}\right) \tag{2}
\end{equation*}
$$

e.g., since $(\mathrm{Fe} / \mathrm{H})_{\odot}=3 \times 10^{-5}$, then $[\mathrm{Fe}]=7.5$
also dimensionless logarithmic measure, "units" sometimes also called "dex"

Radioactive Decay Rate

const decay probability P per unit time:

$$
\begin{equation*}
\frac{d P}{d t}=\lambda=\mathrm{const} \tag{3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{d n}{d t}=-n \frac{d P}{d t}=-\lambda n \tag{4}
\end{equation*}
$$

decay lifetime ("mean life") $\tau=1 / \lambda$
solution: $n=n_{0} e^{-t / \tau}$
also write $n=n_{0} 2^{-t / t_{1 / 2}}=n_{0}\left(e^{\ln 2}\right)^{-t / t_{1 / 2}}=n_{0} e^{-t \ln 2 / t_{1 / 2}}$
"half-life" $t_{1 / 2}=\tau \ln 2$
ω www: supernova 1987A brightness vs time = ''lightcurve"'

Astrophysical Gamma Decays

famous example: ${ }^{26} \mathrm{Al}$ decay chain

$$
\begin{align*}
{ }^{26} \mathrm{Al} \rightarrow & { }^{26} \mathrm{Mg}^{*}+e+\nu \\
& { }^{26} \mathrm{Mg}^{*} \rightarrow{ }^{26} \mathrm{Mg}^{\text {g.s. }}+\gamma \tag{5}
\end{align*}
$$

www: ${ }^{26} \mathrm{Al}$ decay scheme
$t_{1 / 2}\left({ }^{26} \mathrm{Al}\right)=0.7 \mathrm{Myr} ; t_{1 / 2}\left({ }^{26} \mathrm{Mg}^{*}\right)=0.5 \mathrm{ps}$
Q: decay modes? overall timescale?
search sky for 1.8 MeV decay γ rays
www: Galactic coordinates
www: COMPTEL 1.8 MeV sky
decay line seen!

- Q: basic, model-independent implications?
$Q: t_{1 / 2}\left({ }^{26} \mathrm{Al}\right)$ vs relevant astrophysical timescales-implications?

${ }^{26}$ AI Gamma Lines: Smoking Gun of Nucleosynthesis

Most immediately (i.e., most model-independent):

* live radioactivity is present today in space in the form of "fresh" ${ }^{26} \mathrm{Al}$

But we can push further:

- radioactive decay is exponential in time: radionuclides lost after a few $t_{1 / 2}$
- we know $t_{1 / 2}\left({ }^{26} \mathrm{Al}\right)=0.7 \mathrm{Myr}$
- age of Earth/Sun ~ 5 Gyr, age of Galaxy (i.e., Milky Way disk) ~ 10 Gyr
\Rightarrow the ${ }^{26} \mathrm{Al}$ we see was born "yesterday" nucleosynthesis is ongoing in the Galaxy today!
G
Q: implications of ${ }^{26} \mathrm{Al}$ signal morphology (sky pattern)?

Implications of ${ }^{26} \mathrm{Al}$ Gamma-Line Sky Morphology

- ${ }^{26}$ Al signal traces Galactic plane this is where star birth (and death) occur
\Rightarrow (at least some) nucleosynthesis is associated with stars
- ${ }^{26}$ Al signal is diffuse - not collection of points (tricky to show because angular resolution bad)
$\Rightarrow{ }^{26} \mathrm{Al}$ is in the interstellar medium (ISM) and since ${ }^{26} \mathrm{Al}$ short-lived compared to stars stars eject fresh nucleosynthesis products which mix into the ISM

INTEGRAL can measure line shape, position well
www: ${ }^{26}$ Al line shift vs Galactic longitude
Q: summarize result? implications? possible interpretation?

Nuclear Reactions

Notation

$A+b \rightarrow c+D=A(b, c) D$
usually $b, c \in p, n, \alpha={ }^{4} \mathrm{He}, d={ }^{2} \mathrm{H}, \gamma$
e.g., ${ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O}+\gamma$ is ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$

Kinematics

preferred frame: center of mass
Diagram
$m_{1} \vec{v}_{1}+m_{2} \vec{v}_{1}=\left(m_{1}+m_{2}\right) \vec{V}_{\mathrm{CM}}$ (non-rel)
relative vel: $\vec{v}=\vec{v}_{1}-\vec{v}_{1}$
can show:

$$
\begin{aligned}
K E & =\frac{1}{2} m_{1} v^{2}+\frac{1}{2} m_{2} v^{2} \\
& =\frac{1}{2} \mu v^{2}+\frac{1}{2}\left(m_{1}+m_{2}\right) V_{\mathrm{CM}}^{2}=(K E)_{\mathrm{in}} \mathrm{CM}+(K E)_{\text {of }} \mathrm{CM}
\end{aligned}
$$

where reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$

Energy conservation

for $a+b \rightarrow c+d$

$$
E_{f}=E_{i} \text { including rest mass energy! }
$$

$$
\left(m_{c}+m_{d}\right) c^{2}+(K E)_{f}=\left(m_{a}+m_{b}\right) c^{2}+(K E)_{i}
$$

$$
(K E)_{f}=(K E)_{i}+\left(m_{a}+m_{b}-m_{c}-m_{d}\right) c^{2}=(K E)_{i}+Q
$$

with reaction " Q " value:

$$
\begin{align*}
Q & =\text { initial masses - final masses } \tag{6}\\
& =\left[m_{a}+m_{b}-\left(m_{c}+m_{d}\right)\right] c^{2} \tag{7}\\
& =\Delta_{a}+\Delta_{b}-\Delta_{c}-\Delta_{c} \tag{8}
\end{align*}
$$

where last line uses mass defects \& baryon conservation
exothermic reactions: $Q>0$ (mass energy released) can occur for any $(K E)_{i}$
endothermic reactions: $Q<0$
need $(K E)_{i}>|Q|$ to go:
\Rightarrow there is a "threshold" energy

Reaction Physics

classify reactions according to timescale τ :

Direct: $\tau \simeq t_{\text {cross }}=r_{\text {nuke }} / v$
retain "memory" of initial states
"single step" formation of product

Compound: $\tau \gg$ tcross
"forget" initial state
form intermediate QM state (resonance)
"compound" nucleus $A+b \rightarrow W \rightarrow c+D$
decays, emitting particles of final state

