```
Astro 596/496 NPA
    Lecture 6
    Sept. 4, 2009
```

Announcements:

- PF 1 was due today
- Problem Set 1 available, due next Friday, Sept. 11

Last time: nuclear decays, nuclear reactions

Q: what determines when a decay or reaction can occur?

Today: nuclear reaction rates

- cross sections defined
- experiments
- reaction rates: basic formalism
- thermonuclear rates

Reaction Rates and Cross Sections

Reaction: $a+b \rightarrow c+d$

Consider particle beam:
"projectiles," number density n_{a}
incident $\mathrm{w} /$ velocity v on targets of number density n_{b}

Due to interactions, targets and projectiles "see" each other as spheres of projected area $\sigma(v)$: the

cross section

* fundamental measure interaction strength/probability
* nuke \& particle physics meets astrophysics via σ
N
in time δt, what is avg \# collisions on one target?
Q: what defines "interaction zone" around target?
interaction zone: particles sweep out "scattering tube" of area σ, length $\delta x=v \delta t$
projectiles
$\longrightarrow v$

interaction volume around target:
$\delta V=\sigma \delta x=\sigma v \delta t$
${ }^{\omega}$ collide if a projectile is in the volume

Cross Section, Flux, and Collision Rate

in $\delta V, \# \operatorname{proj}=\mathcal{N}_{\text {proj }}=n_{a} \delta V$
so ave \# collisions in δt :

$$
\begin{equation*}
\delta \mathcal{N}_{\mathrm{coll}}=\mathcal{N}_{\mathrm{prj}}=n_{\mathrm{a}} \sigma v \delta t \tag{1}
\end{equation*}
$$

so $\delta \mathcal{N}_{\text {coll }} / \delta t$ gives

$$
\begin{equation*}
\text { avg collision rate per target } b \Gamma_{\text {per } b}=n_{a} \sigma_{a b} v=\sigma_{a b} j_{a} \tag{2}
\end{equation*}
$$

where $j_{a}=n_{a} v$ is incident flux
Q: 「 units? sensible scalings n_{a}, σ, v ? why no n_{b} ?

Q: average target collision time interval?
Q: average projectile distance traveled in this time?
estimate avg time between collisions on target b :
mean free time τ
collision rate: $\Gamma=d \mathcal{N}_{\text {coll }} / d t$
so wait time until next collision set by $\delta N_{\text {coll }}=\Gamma_{\text {per } b \tau}=1$:

$$
\begin{equation*}
\tau=\frac{1}{\Gamma_{\operatorname{per} b}}=\frac{1}{n_{a} \sigma v} \tag{3}
\end{equation*}
$$

in this time, projectile a moves distance: mean free path

$$
\begin{equation*}
\ell_{\mathrm{mpf}}=v \tau=\frac{1}{n_{a} \sigma} \tag{4}
\end{equation*}
$$

no explicit v dep, but still $\ell(E) \propto 1 / \sigma(E)$
Q : physically, why the scalings with n, σ ?

Q: what sets σ for billiard balls?
ง Q : what set σ for $e^{-}+e^{-}$scattering?

Cross Section vs Particle "Size"

if particles interact only by "touching"
(e.g., billiard balls)
then $\sigma \leftrightarrow$ particle radii
but: if interact by force field
(e.g., gravity, EM, nuke, weak)
cross section σ unrelated to physical size!

For example: e^{-}has $r_{e}=0$ (as far as we know!) but electrons scatter via Coulomb (and weak) interaction
"touch-free scattering"

Q: how to measure cross sections experimentally?

Nuclear Astrophysics Experiments

www: NSCL at Michigan State
WWw: TRIUMF, cyclotron
www: RIKEN
www: LUNA, Gran Sasso

Reaction Rate Per Volume

recall: collision rate per target b is $\Gamma_{\text {per } b}=n_{a} \sigma_{a b} v$ total collision rate per unit volume is

$$
\begin{equation*}
r=\frac{d n_{\mathrm{coll}}}{d t}=\Gamma_{\operatorname{per} b} n_{b}=\frac{1}{1+\delta_{a b}} n_{a} n_{b} \sigma v \tag{5}
\end{equation*}
$$

Kronecker $\delta_{a b}$: 0 unless particles $a \& b$ identical Note: symmetric w.r.t. the two particles

What if particles have more than one relative velocity?

Reaction Rates: Velocity Distributions

If $v \in$ distribution, rates is average over velocities:

$$
\begin{equation*}
\langle r\rangle=\left\langle n_{1} n_{2} \sigma v\right\rangle \tag{6}
\end{equation*}
$$

where $\langle\cdots\rangle$ is avg over relative velocities
given $n_{i}=\int d^{3} \vec{v} f_{i}(\vec{v})$,
i.e., $f(v)$ is the velocity distribution of i
and $v_{\text {rel }}=\left|\vec{v}_{2}-\vec{v}_{1}\right|$

$$
\begin{equation*}
\langle r\rangle=\int d^{3} \overrightarrow{v_{1}} \int d^{3} \overrightarrow{v_{2}} f\left(\vec{v}_{1}\right) f\left(\vec{v}_{2}\right) \sigma\left(v_{\text {rel }}\right) v_{\text {rel }} \tag{7}
\end{equation*}
$$

- Q: (astro)physically relevant velocity distribution(s)?

Thermal Velocity Distribution

Important special case: Non-Relativistic, dilute gas
\rightarrow distribution $f(\vec{v})$ is Maxwell-Boltzmann
at temperature T

$$
\begin{equation*}
f_{\mathrm{MB}}(\vec{v}) d^{3} \vec{v}=n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k T}\right)\left(4 \pi v^{2} d v\right) \tag{8}
\end{equation*}
$$

a Gaussian

So: $r=\int$ gaussian $_{1} \times$ gaussian $_{2}$
PS 1.3: reduce this to one Gaussian in relative velocity:

$$
\begin{equation*}
\langle r\rangle=n_{1} n_{2}\langle\sigma v\rangle \tag{9}
\end{equation*}
$$

average over relative v and reduced mass μ

$$
\begin{aligned}
\langle\sigma v\rangle & =\left(\frac{\mu}{2 \pi k T}\right)^{3 / 2} \int d^{3} \vec{v} v \sigma(v) e^{-\mu v^{2} / 2 k T} \\
& =\sqrt{\frac{8}{\pi \mu}} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} d E E \sigma(E) e^{-E / k T}
\end{aligned}
$$

"thermonuclear" reaction rate

Note $e^{-E / k T}$ factor
suppresses $E \gtrsim k T$ exponentially strongly
Recall Coulomb barrier:
$E_{C}=Z_{1} Z_{2} e^{2} / r=Z_{1} Z_{2} 1.44 \mathrm{MeV}(1 \mathrm{fm} / r)$
Classically, need $\gtrsim 1 \mathrm{MeV}$ to overcome barrier
But $k T=0.86 \mathrm{keV}\left(T / 10^{7} \mathrm{~K}\right) \ll E_{C}$ for solar-like temp !?!
$\stackrel{Q}{ }{ }^{-}$What does this seem to imply?
Q: What's the flaw?

