Astro 596/496 NPA Lecture 8 Sept. 11, 2009

Announcements:

 \vdash

- Problem Set 1 due
- Preflight 2 posted, due next Friday, noon
- Astronomy Colloquium next Tuesday, here, 4pm: William Hanlon, on Ultra-High-Energy Cosmic Rays $E_{\rm UHECR}>10^{19}~{\rm eV}\sim1$ Joule!

 \rightarrow highest-energy particles observed!

Q: how much more than Fermilab/LHC beams?

Last time: began particle physics overview with antimatter

Antiparticle Properties

fundamental symmetries of quantum fields (CPT) guarantee relationships between

particle χ and antiparticle $\overline{\chi}$ properties:

- mass $m(\bar{\chi}) = m(\chi)$ not negative mass!
- decay lifetime $\tau(\bar{\chi}) = \tau(\chi)$
- spin $S(\bar{\chi}) = S(\chi)$
- electric charge $Q(\bar{\chi}) = -Q(\chi)$

sometimes particle = own antiparticle

Q: if so, what must be true? e.g., $\bar{\gamma} = \gamma$

 $_{\scriptscriptstyle \rm N}$ but: $\bar{n}\neq n$

Conservation Laws

Govern transitions from initial to final states \Rightarrow scattering, reactions, decays

• (Total) energy, momentum conserved use relativistic definitions, e.g., include rest mass; then

$$\sum E_i = \sum E_f$$

$$\sum \vec{p_i} = \vec{p_f}$$

e.g., $n \rightarrow \nu \otimes \dots$ since $m_n \neq m_\nu$

• angular momentum conserved

$$J_i = J_f$$

e.g., $n \rightarrow p + e^- \otimes$
J: $s = 1/2 \neq s = 1/2 + s = 1/2 + \ell$

ω

• electric charge: $\sum Q_i = \sum Q_f$ e.g., $p + p \rightarrow p + n \otimes$

• baryon number conserved

$$\begin{array}{l} B(n) = B(p) = +1 \\ B(\bar{n}) = B(\bar{p}) = -1 \\ \text{for nucleus, } B_i = A_i \quad \Rightarrow n_{B,i} = A_i n_i \\ \text{conservation: } \sum B_i = \sum B_f \\ \text{e.g., } p + p \rightarrow p + p + n \otimes \\ \text{but } p + p \rightarrow p + p + p + \bar{p} \text{ OK} \end{array}$$

• lepton number: lepton =
$$e$$
 or ν_e
 $L(e^-) = L(\nu_e) = +1$
 $L(e^+) = L(\bar{\nu}_e) = -1$
conserved: $\sum L_i = \sum L_f$
check: $n \rightarrow p + e^- + \nu_e \otimes$
 $n \rightarrow p + e^- + \bar{\nu}_e \text{ OK}$
 $e^+e^- \rightarrow \nu_e \otimes$
 $e^+e^- \rightarrow \nu_e \bar{\nu}_e \text{ OK}$

4

Fundamental Particles

high-energy experiments find a zoo of unstable particles in addition to "everyday" stable species

most of these hundreds of particles are *strongly* interacting—feel nuclear forces and are found to be bound states of...

Quarks

n and p *not* fundamental particles but are composite, have substructure

but: free, isolated, individual quarks have *never* been observed! Q: so why do we even believe they exist? * magnetic moments of nucleons e has $\mu_e = 2e\hbar/m_ec$ but: $\mu_p = 2.79 \ e\hbar/m_pc$, $\mu_n = -1.91 \ e\hbar/m_nc$

σ

★ e - N scattering expts show
 nucleons do not behave as point particles → substructure
 but do act like systems fo 3 pointlike particles
 "quarks" (Gell-Mann: from J. Joyce's Finnegan's Wake)

• hadron "spectroscopy" understandable in quark model

two quark types ("flavors") in nucleons: u "up" d "down" protons p = uud, neutrons n = uddquark electric charge $Q_u = +2/3$, $Q_d = -1/3$ \Rightarrow so: fundamental charge really is e/3spin S(u) = 1/2 = S(d) (fermions)

Hadrons: Systems of Quarks

hadron = made of quarks = strongly interacting

baryon = qqq triple in bound state e.g., p = uud, n = uddalso numerous unstable baryons, e.g., $\Delta^{++} = uuu$, $\Delta^{-} = ddd$ www: PDG baryon listings

~

meson = $q\bar{q}$ pair in bound state (decays) e.g., "pion" $\pi^+ = u\bar{d}, \pi^- = \pi^+ = \bar{u}d$ $\pi^0 = 1/\sqrt{2}(u\bar{u} - d\bar{d})$ $m(\pi^{\pm}) = 140$ MeV, $m(\pi^0) = 135$ MeV decay: $\pi^0 \rightarrow \gamma\gamma, \tau(\pi^0) = 8.4 \times 10^{-17}$ s www: gamma-ray sky > 100 MeV: $pp \rightarrow pp\pi^0 \rightarrow \gamma\gamma$ www: PDG meson listings can understand hadron masses ("spectrum" of energy states) and interaction properties

 \Rightarrow ground, excited states of quark systems

example: in terms of quark states baryons $\Delta^+ = uud$, $\Delta^0 = ddu \ (m_{\Delta} \sim 1232 \text{ MeV})$ are spin S = 3/2 excitations of p, n"excited states" of nucleon

note: mesons & baryons can and do interact: e.g., $p + p \rightarrow p + n + \pi^+$

Particle Families

Useful to group normal matter constituents as "family"

$$\begin{pmatrix} q_{+2/3} \\ q_{-1/3} \\ \ell_{-1} \\ \ell_{0} \end{pmatrix} = \begin{pmatrix} u \\ d \\ e \\ \nu_{e} \end{pmatrix}$$
(1)

High-Energy expts show: other quarks, leptons exist! ★ strange quark s: Q(s) = -1/3

→ strange baryons $\Lambda = uds$, mesons $K^- = s\bar{u}$ ★ mu-lepton (muon) μ :

 $m(\mu) = 105.7 \text{ MeV} \simeq 200 m_e$

I. Rabi: "Who ordered that?"

www: PDG lepton listings

° new

new particles decay to "first family" particles; e.g., $\Lambda \rightarrow p + \pi^-$ Q: implications for early universe? for dark matter?

Periodic Table of Elementary Particles

known fundamental particles: 3 families

$$\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_\mu \end{pmatrix} \text{ charm quark } \begin{pmatrix} t \\ b \\ \tau \\ \nu_\tau \end{pmatrix} \text{ bottom quark } (2)$$

+antiparticles

10

all of these are spin-1/2: matter is made of fermions!

note: for quarks and charged leptons, masses increase with each family \rightarrow is this same for ν s??

Generalized Conservation Laws

Conservation laws: as before, but now

baryon number: includes quarks: $B_q = 1/3$

e.g.,
$$B(\Lambda) = 1$$
, $B(q\bar{q}) = 0$

 \rightarrow ''meson number'' not conserved

lepton number:

separately conserved for each family (but see discussion of ν oscillations) e, μ , and τ lepton number each conserved $e.g., \mu^- \rightarrow e^- + \gamma$: \otimes ! L_{μ}, L_e non-cons instead $\mu^- \rightarrow e^- \nu_{\mu} \bar{\nu}_e$ OK

☐ Whenever see a reaction:

first task is to ensure conservation laws obeyed

Fundamental Interactions: Overview

		Mass			Typical
	Field	$m_{ m boson}c^2$	Range	Relative	Cross section
Interaction	Quantum	(GeV)	(cm)	Strength	at 1 GeV (cm ²)
Strong	Gluon	0	$\sim 10^{-13}$	~ 1	$\sim 10^{-26}$
Weak	W^{\pm}, Z^{O}	82,91	$\sim 10^{-16}$	$\sim 10^{-5}$	$\sim 10^{-40}$
Electromagnetic	photon	0	∞	$\alpha = 1/137$	$\sim 10^{-29}$
Gravitation	graviton(?)	0	∞	$\sim 10^{-38}$	N/A

Fundamental Interactions and Forces

at quantum level, forces transmitted by boson exchange

e.g., Coulomb scattering: $e\mu \rightarrow e\mu$ exchange photon

boson mass \leftrightarrow interaction range exchange timescale $m_{boson}c^2\tau \lesssim \hbar$ \Rightarrow range $r \lesssim c\tau \sim \hbar/m_{boson}c$ (Compton wavelength) n

- EM: photon $m_{\gamma} = 0 \rightarrow$ infinite range $V_{\text{EM}}(r) \sim 1/r$, so $V \neq 0$ for $r < \infty$
- Gravity: also $V \sim 1/r \rightarrow \text{massless graviton}(??)$
- Weak interaction: massive bosons $W^{\pm}, Z^{0}, M \gg m_p \rightarrow \text{finite range}$

• strong interaction: felt by quarks key: $V_{strong}(r) \sim a/r + kr$ as $r \rightarrow \infty$, $V \rightarrow \infty$! "confinement" : no free quarks found! always bound into baryons (qqq) mesons (q \bar{q})

Note: nuclear force $\simeq \pi$ exchange range $r_{\rm nuke} \sim \hbar/m_\pi c \sim 1$ fm

Who feels what?

all particles subject to gravity, and neutrinos "feel" only weak interaction charged leptons feel only weak and EM quarks feel all forces

Note: β decay really quark transformation $n \rightarrow p + e^- + \bar{\nu}_e$ $udd \rightarrow uud + e^- + \bar{\nu}_e$ $\Rightarrow d \rightarrow u + e^- + \bar{\nu}_e$

Relativistic Kinematics

Special relativity: given two events separated by dX = (dt, dx, dy, dz)interval $ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$ is invariant: same value for all observers massless particles (e.g., γ): $ds^2 = 0$

Lorentz transform (boost):

if know $X^{\mu} = (ct, \vec{x})$ one observer, what is it for another (X')? $X' = [\gamma(ct - \beta x), \gamma(x - \beta ct), y, z]$ where $\beta = v/c$, $\gamma = 1/\sqrt{1 - v^2/c^2}$

formally similar to spatial rotations ↓ → coordinates "mix" in linear combo but Lorentz mixes space and time Objects which transform this way: 4-vectors \Rightarrow energy-momentum: $P = (E_{tot}, c\vec{p})$ is 4-vec conservation $\rightarrow \sum P_i = \sum P_f$ (same frame) $\rightarrow \sum E_i = \sum E_f$ and $\sum \vec{p_i} = \sum \vec{p_f}$ include rest mass energy! note: $P_i^2 = P_f^2$ invariant for any i, f frames where $P_1 \cdot P_2 = E_1 E_2 - \vec{p_1} \cdot \vec{p_2}$

particle at rest:
$$P = (mc^2, 0)$$

boost with vel \vec{v} :
 $P' = (\gamma mc^2, \gamma \vec{\beta} mc^2)$
 $\Rightarrow E = \gamma mc^2$, and $\vec{p} = \gamma m \vec{\beta} c = \gamma m \vec{v}$
note: invariant $P^2 = E^2 - \vec{p}^2 = m^2 = const$ OK
 $\vec{v}/c = c\vec{p}/E$ (when E includes rest mass)

kinetic energy: $T = E - mc^2 = (\gamma - 1)mc^2$

Massless particles: $m^2 = 0 = E^2 - (cp)^2 \Rightarrow E = cp$

Natural Units

Fundamental dimensionful constants set natural scales natural to use these as *standards*

- simplifies notation
- very common in particle, nuclear, cosmo literature

fundamental speed limit set by \boldsymbol{c}

- so write all speeds as fraction of this
- \rightarrow effectively set c = 1

i.e., all v in terms of c $E^2 - p^2 = m^2$, v = p/E

sometimes also use fundamental angular momentum \hbar : effectively set $\hbar = 1$

 $\stackrel{\text{N}}{=} \begin{array}{l} \text{helpful conversion:} \quad \overline{\hbar c} \simeq 200 \text{ MeV fm} \\ \text{e.g., Compton wavelength} \\ r_c = 1/m = \hbar/mc = \hbar c/mc^2 = 200 \text{ fm}/m_{\text{MeV}} \end{array}$