Astro 596/496 NPA Lecture 8 Sept. 11, 2009

Announcements:

- Problem Set 1 due
- Preflight 2 posted, due next Friday, noon
- Astronomy Colloquium next Tuesday, here, 4pm: William Hanlon, on Ultra-High-Energy Cosmic Rays $E_{\text {UHECR }}>10^{19} \mathrm{eV} \sim 1$ Joule!
\rightarrow highest-energy particles observed!
Q: how much more than Fermilab/LHC beams?

Last time: began particle physics overview with antimatter

Antiparticle Properties

fundamental symmetries of quantum fields (CPT) guarantee relationships between particle χ and antiparticle $\bar{\chi}$ properties:

- mass $m(\bar{\chi})=m(\chi)$ not negative mass!
- decay lifetime $\tau(\bar{\chi})=\tau(\chi)$
- $\operatorname{spin} S(\bar{\chi})=S(\chi)$
- electric charge $Q(\bar{\chi})=-Q(\chi)$
sometimes particle $=$ own antiparticle Q: if so, what must be true?
e.g., $\bar{\gamma}=\gamma$
but: $\bar{n} \neq n$

Conservation Laws

Govern transitions from initial to final states
\Rightarrow scattering, reactions, decays

- (Total) energy, momentum conserved use relativistic definitions, e.g., include rest mass; then

$$
\begin{aligned}
& \sum E_{i}=\sum E_{f} \\
& \sum \vec{p}_{i}=\vec{p}_{f} \\
& \text { e.g., } n \rightarrow \nu \otimes \quad \ldots \text { since } m_{n} \neq m_{\nu}
\end{aligned}
$$

- angular momentum conserved

$$
J_{i}=J_{f}
$$

$$
\text { e.g., } n \rightarrow p+e^{-} \otimes
$$

$$
J: s=1 / 2 \neq s=1 / 2+s=1 / 2+\ell
$$

ω

- electric charge: $\sum Q_{i}=\sum Q_{f}$
e.g., $p+p \rightarrow p+n \otimes$
- baryon number conserved

$$
\begin{aligned}
& B(n)=B(p)=+1 \\
& B(\bar{n})=B(\bar{p})=-1
\end{aligned}
$$

for nucleus, $B_{i}=A_{i} \quad \Rightarrow n_{B, i}=A_{i} n_{i}$
conservation: $\sum B_{i}=\sum B_{f}$
e.g., $p+p \rightarrow p+p+n \otimes$ but $p+p \rightarrow p+p+p+\bar{p}$ ○K

- lepton number: lepton $=e$ or ν_{e}

$$
\begin{aligned}
& L\left(e^{-}\right)=L\left(\nu_{e}\right)=+1 \\
& L\left(e^{+}\right)=L\left(\bar{\nu}_{e}\right)=-1
\end{aligned}
$$

conserved: $\sum L_{i}=\sum L_{f}$
check: $n \rightarrow p+e^{-}+\nu_{e} \otimes$
$n \rightarrow p+e^{-}+\bar{\nu}_{e} \bigcirc K$
$\rightarrow e^{+} e^{-} \rightarrow \nu_{e} \otimes$
$e^{+} e^{-} \rightarrow \nu_{e} \bar{\nu}_{e} \bigcirc K$

Fundamental Particles

high-energy experiments find a zoo of unstable particles in addition to "everyday" stable species
most of these hundreds of particles
are strongly interacting-feel nuclear forces
and are found to be bound states of...

Quarks

n and p not fundamental particles
but are composite, have substructure
but: free, isolated, individual quarks have never been observed!
Q : so why do we even believe they exist?
\star magnetic moments of nucleons
e has $\mu_{e}=2 e \hbar / m_{e} c$
but: $\mu_{p}=2.79 \mathrm{e} / m_{p} c, \mu_{n}=-1.91 \mathrm{e} \hbar / m_{n} c$
$\star e-N$ scattering expts show
nucleons do not behave as point particles \rightarrow substructure
but do act like systems fo 3 pointlike particles
"quarks" (Gell-Mann: from J. Joyce's Finnegan's Wake)

- hadron "spectroscopy" understandable in quark model
two quark types ("flavors") in nucleons: u "up" d "down"
protons $p=u u d$, neutrons $n=u d d$
quark electric charge $Q_{u}=+2 / 3, Q_{d}=-1 / 3$
${ }^{\circ} \Rightarrow$ so: fundamental charge really is $e / 3$
spin $S(u)=1 / 2=S(d)$ (fermions)

Hadrons: Systems of Quarks

hadron $=$ made of quarks $=$ strongly interacting
baryon $=q q q$ triple in bound state e.g., $p=u u d, n=u d d$ also numerous unstable baryons, e.g., $\Delta^{++}=u u u, \Delta^{-}=d d d$
www: PDG baryon listings
meson $=q \bar{q}$ pair in bound state (decays)
e.g., "pion" $\pi^{+}=u \bar{d}, \pi^{-}=\overline{\pi^{+}}=\bar{u} d$
$\pi^{0}=1 / \sqrt{2}(u \bar{u}-d \bar{d})$
$m\left(\pi^{ \pm}\right)=140 \mathrm{MeV}, m\left(\pi^{0}\right)=135 \mathrm{MeV}$
decay: $\pi^{0} \rightarrow \gamma \gamma, \tau\left(\pi^{0}\right)=8.4 \times 10^{-17} \mathrm{~s}$
www: gamma-ray sky $>100 \mathrm{MeV}: p p \rightarrow p p \pi^{0} \rightarrow \gamma \gamma$
www: PDG meson listings
can understand hadron masses ("spectrum" of energy states) and interaction properties
\Rightarrow ground, excited states of quark systems
example: in terms of quark states
baryons $\Delta^{+}=u u d, \Delta^{0}=d d u\left(m_{\Delta} \sim 1232 \mathrm{MeV}\right.$)
are spin $S=3 / 2$ excitations of p, n
"excited states" of nucleon
note: mesons \& baryons can and do interact:
e.g., $p+p \rightarrow p+n+\pi^{+}$

Particle Families

Useful to group normal matter constituents as "family"

$$
\left(\begin{array}{c}
q_{+2 / 3} \tag{1}\\
q_{-1 / 3} \\
\ell_{-1} \\
\ell_{0}
\end{array}\right)=\left(\begin{array}{c}
u \\
d \\
e \\
\nu_{e}
\end{array}\right)
$$

High-Energy expts show: other quarks, leptons exist!

* strange quark $s: Q(s)=-1 / 3$
\rightarrow strange baryons $\wedge=u d s$, mesons $K^{-}=s \bar{u}$
\star mu-lepton (muon) μ :
$m(\mu)=105.7 \mathrm{MeV} \simeq 200 m_{e}$
I. Rabi: "Who ordered that?"
www: PDG lepton listings
\bullet
new particles decay to "first family" particles; e.g., $\wedge \rightarrow p+\pi^{-}$ Q : implications for early universe? for dark matter?

Periodic Table of Elementary Particles

known fundamental particles: 3 families

$$
\left(\begin{array}{c}
u \tag{2}\\
d \\
e \\
\nu_{e}
\end{array}\right)\left(\begin{array}{c}
c \\
s \\
\mu \\
\nu_{\mu}
\end{array}\right) \quad \text { charm quark }\left(\begin{array}{c}
t \\
b \\
\tau \\
\nu_{\tau}
\end{array}\right) \begin{aligned}
& \text { top quark } \\
& \text { bottom quark } \\
& \text { tau lepton }
\end{aligned}
$$

+antiparticles
all of these are spin-1/2: matter is made of fermions!
note: for quarks and charged leptons,
$\stackrel{\downarrow}{\circ} \quad$ masses increase with each family
\rightarrow is this same for νs ??

Generalized Conservation Laws

Conservation laws: as before, but now
baryon number: includes quarks: $B_{q}=1 / 3$
e.g., $B(\wedge)=1, B(q \bar{q})=0$
\rightarrow "meson number" not conserved
lepton number:
separately conserved for each family (but see discussion of ν oscillations)
e, μ, and τ lepton number each conserved
e.g., $\mu^{-} \rightarrow e^{-}+\gamma: \otimes!L_{\mu}, L_{e}$ non-cons instead $\mu^{-} \rightarrow e^{-} \nu_{\mu} \bar{\nu}_{e}$ OK
\exists Whenever see a reaction:
first task is to ensure conservation laws obeyed

Fundamental Interactions: Overview

	Field	Mass		Typical $m_{\text {boson }} c^{2}$	Range (cm)
Interaction	Quantum	Relative	Cross section Strength	at $1 \mathrm{GeV}\left(\mathrm{cm}^{2}\right)$	

Fundamental Interactions and Forces

at quantum level, forces transmitted by boson exchange
e.g., Coulomb scattering: $e \mu \rightarrow e \mu$
exchange photon
boson mass \leftrightarrow interaction range
exchange timescale $m_{\text {boson }} c^{2} \tau \lesssim \hbar$
\Rightarrow range $r \lesssim c \tau \sim \hbar / m_{\text {boson }} c$ (Compton wavelength) n

- EM: photon $m_{\gamma}=0 \rightarrow$ infinite range $V_{\mathrm{EM}}(r) \sim 1 / r$, so $V \neq 0$ for $r<\infty$
- Gravity: also $V \sim 1 / r \rightarrow$ massless graviton(??)
$\stackrel{\omega}{\omega}$ Weak interaction: massive bosons
$W^{ \pm}, Z^{0}, M \gg m_{p} \rightarrow$ finite range
- strong interaction: felt by quarks
key: $V_{\text {strong }}(r) \sim a / r+k r$
as $r \rightarrow \infty, V \rightarrow \infty$!
"confinement" : no free quarks found!
always bound into baryons ($q q q$) mesons ($q \bar{q}$)

Note: nuclear force $\simeq \pi$ exchange
range $r_{\text {nuke }} \sim \hbar / m_{\pi} c \sim 1 \mathrm{fm}$

Who feels what?

all particles subject to gravity, and neutrinos "feel" only weak interaction charged Ieptons feel only weak and EM quarks feel all forces

Note: β decay really quark transformation
$n \rightarrow p+e^{-}+\bar{\nu}_{e}$
$u d d \rightarrow u u d+e^{-}+\bar{\nu}_{e}$
$\Rightarrow d \rightarrow u+e^{-}+\bar{\nu}_{e}$

Director's Cut Extras

Relativistic Kinematics

Special relativity:
given two events separated by $d X=(d t, d x, d y, d z)$
interval $d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ is
invariant: same value for all observers
massless particles (e.g., γ): $d s^{2}=0$

Lorentz transform (boost):
if know $X^{\mu}=(c t, \vec{x})$ one observer, what is it for another $\left(X^{\prime}\right)$?
$X^{\prime}=[\gamma(c t-\beta x), \gamma(x-\beta c t), y, z]$
where $\beta=v / c, \gamma=1 / \sqrt{1-v^{2} / c^{2}}$
formally similar to spatial rotations
\rightarrow coordinates "mix" in linear combo
but Lorentz mixes space and time

Objects which transform this way: 4 -vectors
\Rightarrow energy-momentum: $P=\left(E_{\mathrm{tot}}, c \vec{p}\right)$ is $4-\mathrm{vec}$ conservation $\rightarrow \sum P_{i}=\sum P_{f}$ (same frame)
$\rightarrow \sum E_{i}=\sum E_{f}$ and $\sum \vec{p}_{i}=\sum \vec{p}_{f}$
include rest mass energy!
note: $P_{i}^{2}=P_{f}^{2}$ invariant for any i, f frames
where $P_{1} \cdot P_{2}=E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}$
particle at rest: $P=\left(m c^{2}, 0\right)$
boost with vel \vec{v} :
$P^{\prime}=\left(\gamma m c^{2}, \gamma \vec{\beta} m c^{2}\right)$
$\Rightarrow E=\gamma m c^{2}$, and $\vec{p}=\gamma m \vec{\beta} c=\gamma m \vec{v}$
note: invariant $P^{2}=E^{2}-\vec{p}^{2}=m^{2}=$ const $O K$
$\vec{v} / c=c \vec{p} / E$ (when E includes rest mass)
kinetic energy: $T=E-m c^{2}=(\gamma-1) m c^{2}$

Massless particles:
$m^{2}=0=E^{2}-(c p)^{2} \Rightarrow E=c p$

Natural Units

Fundamental dimensionful constants set natural scales natural to use these as standards

- simplifies notation
- very common in particle, nuclear, cosmo literature
fundamental speed limit set by c
- so write all speeds as fraction of this
\rightarrow effectively set $c=1$
i.e., all v in terms of c
$E^{2}-p^{2}=m^{2}, v=p / E$
sometimes also use fundamental angular momentum \hbar : effectively set $\hbar=1$
helpful conversion: $\hbar c \simeq 200 \mathrm{MeV} \mathrm{fm}$
N
e.g., Compton wavelength
$r_{c}=1 / m=\hbar / m c=\hbar c / m c^{2}=200 \mathrm{fm} / m_{\mathrm{MeV}}$

