Astro 596/496 NPA Lecture 9 Sept. 14, 2009

Announcements:

- Preflight 2 posted, due next Friday, noon
- Astronomy Colloquium tomorrow, here, 4pm: William Hanlon, on Ultra-High-Energy Cosmic Rays $E_{\rm UHFCR}>10^{19}~{\rm eV}\sim 1~{\rm Joule!}$
 - \rightarrow highest-energy particles observed!

Today:

- finish particle physics
- begin cosmology

Fundamental Interactions and Forces

at quantum level, matter (fermions) interacts by boson exchange

e.g., Coulomb scattering: $e\mu \rightarrow e\mu$ exchange photon

boson mass ↔ interaction range

exchange timescale: $\Delta E \Delta t \sim m_{\rm boson} c^2 \tau_{\rm exch} \lesssim \hbar$ \Rightarrow range $r \lesssim c \tau_{\rm exch} \sim \hbar/m_{\rm boson} c$ (Compton wavelength)

- EM: photon $m_{\gamma} = 0 \rightarrow \text{infinite range}$ $V_{\text{FM}}(r) \sim 1/r$, so $V \neq 0$ for $r < \infty$
- Gravity: also $V_{\text{Grav}} \sim 1/r \rightarrow \text{massless graviton}(??)$
- Weak interaction: massive bosons $W^{\pm}, Z^{0}, M \gg m_{p} \rightarrow \text{finite range}$

• **Strong** interaction: felt by quarks

key: $V_{\rm strong}(r) \sim a/r + kr$

as $r \rightarrow \infty$, $V \rightarrow \infty!$

"confinement": no free quarks found! always bound into baryons (qqq) mesons $(q\bar{q})$

Note: nuclear force $\simeq \pi$ exchange

range $r_{
m nuke} \sim \hbar/m_\pi c \sim 1 \ {
m fm}$

Fundamental Interactions: Overview

		Mass			Typical
	Field	$m_{boson}c^2$	Range	Relative	Cross section
Interaction	Quantum	(GeV)	(cm)	Strength	at 1 GeV (cm ²)
Strong	Gluon	0	$\sim 10^{-13}$	~ 1	$\sim 10^{-26}$
Weak	W^\pm, Z^0	82, 91	$\sim 10^{-16}$	$\sim 10^{-5}$	$\sim 10^{-40}$
Electromagnetic	photon	0	∞	$\alpha = 1/137$	$\sim 10^{-29}$
Gravitation	graviton(?)	0	∞	$\sim 10^{-38}$	N/A

Who feels what?

all particles subject to gravity, and neutrinos "feel" only weak interaction charged leptons feel only weak and EM quarks feel all forces

Note: β decay really quark transformation $n{\to}p+e^-+\bar{\nu}_e$ $udd{\to}\;uud+e^-+\bar{\nu}_e$ $\Rightarrow d{\to}u+e^-+\bar{\nu}_e$

Clearing the Palette: Fermilab Tour Headcount

www: Fermitour info

COSMOLOGY

Physical Cosmology

Modest goals:

scientific understanding of the

- origin
- evolution
- contents
- structure
- future

of the Universe

we will see:

- ★ known particle & nuke physics plays decisive role
- * open questions in cosmology probably (?) linked to open questions in particle physics

Cosmography Units: Astronomical Distances

Charity begins at home: Astronomical Unit (AU)

- average Earth-Sun distance, known very precisely
- $r(\text{Earth} \odot) \equiv 1 \text{ AU} = 1.49597870660 \times 10^{13} \text{ cm}$

parsec

- derives from trigonometric parallax measures of stars
- ullet star with parallactic angle p lies at distance

$$r(p) = \frac{1 \text{ AU}}{\tan p} \approx \frac{1 \text{ AU}}{p} \tag{1}$$

for p = 1 arcsec = 4.8×10^{-6} rad, distance is

$$r(1 \text{ arcsec}) \equiv 1 \text{ parsec} \equiv 1 \text{ pc} = 3.0857 \times 10^{18} \text{ cm} \approx 3 \text{ lyr}$$
 (2)

Q: pc, kpc, Mpc, Gpc characteristic scales for what?

Typical Lengthscales: Cosmic Hierarchy

 \star typical star-star separation in galaxies ~ 1 pc

 \star typical (visible) galaxy size $\sim 1 \text{kpc} = 10^3 \text{ pc}$

★ (present-day) typical galaxy-galaxy separation $\sim 1 \text{ Mpc} = 10^6 \text{ pc}$

 \star (present-day) observable universe $\sim 1 \text{ Gpc} = 10^9 \text{ pc}$

Q: Why is this a "hierarchy"?

Observational Cosmology: Zeroth-Order Picture

Cosmic Matter Distribution

observable cosmo "building blocks" — galaxies \approx all stars in galaxies

www: Galaxy Survey: 2dFGRS

Q: what do you notice?

Q: e.g., distribution on small, large scales?

Q: distribution in different directions?

The Universe to Zeroth Order: Cosmological Principle

Observations teach us that

- at any given cosmic time ("epoch")
- to "zeroth order":

the Universe is both

- 1. homogeneous average properties same at all points
- 2 isotropic looks same in all directions

"Cosmological Principle"

the universe is homogeneous & isotropic

first guessed(!) by A. Einstein (1917)

- □ no special points! no center, no edge!
 - "principle of mediocrity"? "ultimate democracy?"

Q: do you need both?

Q: e.g., how can you be isotropic but not homogeneous?

Q: e.g., how can you be homogeneous but not isotropic?

Example: Cosmo principle and galaxy properties

Q: if cosmo principle true, how should it be reflected in observations of galaxies at any given time?

Q: what does cosmo principle say about how galaxy properties evolve with time?

Cosmo principle and galaxy properties: at any given time:

- average density of galaxies same everywhere
- distribution of galaxy properties same everywhere range of types range of colors range of luminosity L, mass M, ... ratios of normal/dark matter

These are very restrictive constraints!

• time evolution: must maintain large-scale homogeneity and isotropy but otherwise, by itself cosmo principle allows any changes!

Cosmo Principle hugely powerful & the "cosmologist's friend" very strongly constrains possible cosmologies

→ large-scale spatial behavior maximally simple

Director's Cut Extras

Relativistic Kinematics

Special relativity:

given two events separated by dX=(dt,dx,dy,dz) interval $ds^2=c^2dt^2-dx^2-dy^2-dz^2$ is invariant: same value for all observers massless particles (e.g., γ): $ds^2=0$

Lorentz transform (boost):

if know $X^{\mu}=(ct,\vec{x})$ one observer, what is it for another (X')? $X'=[\gamma(ct-\beta x),\gamma(x-\beta ct),y,z]$ where $\beta=v/c$, $\gamma=1/\sqrt{1-v^2/c^2}$

formally similar to spatial rotations

ightarrow coordinates "mix" in linear combo but Lorentz mixes space and time

Objects which transform this way: 4-vectors \Rightarrow energy-momentum: $P = (E_{\text{tot}}, c\vec{p})$ is 4-vec conservation $\rightarrow \sum P_i = \sum P_f$ (same frame) $\rightarrow \sum E_i = \sum E_f$ and $\sum \vec{p_i} = \sum \vec{p_f}$ include rest mass energy! note: $P_i^2 = P_f^2$ invariant for any i, f frames where $P_1 \cdot P_2 = E_1 E_2 - \vec{p_1} \cdot \vec{p_2}$

particle at rest: $P=(mc^2,0)$ boost with vel \vec{v} : $P'=(\gamma mc^2,\gamma\vec{\beta}mc^2)$ $\Rightarrow E=\gamma mc^2$, and $\vec{p}=\gamma m\vec{\beta}c=\gamma m\vec{v}$ note: invariant $P^2=E^2-\vec{p}^2=m^2=const$ OK $\vec{v}/c=c\vec{p}/E$ (when E includes rest mass)

kinetic energy: $T = E - mc^2 = (\gamma - 1)mc^2$

Massless particles:

$$m^2 = 0 = E^2 - (cp)^2 \Rightarrow E = cp$$

Natural Units

Fundamental dimensionful constants set natural scales natural to use these as *standards*

- simplifies notation
- very common in particle, nuclear, cosmo literature

fundamental speed limit set by c

- so write all speeds as fraction of this
- \rightarrow effectively set c=1

i.e., all v in terms of c

$$E^2 - p^2 = m^2$$
, $v = p/E$

sometimes also use fundamental angular momentum \hbar : effectively set $\hbar = 1$

helpful conversion: $\hbar c \simeq 200$ MeV fm

e.g., Compton wavelength

$$r_c = 1/m = \hbar/mc = \hbar c/mc^2 = 200 \text{ fm}/m_{\text{MeV}}$$

The Plague of "Little h"

Back in the old days (\gtrsim 10 yr ago): H_0 poorly measured H_0 (old data) \sim 50 - 100 km s $^{-1}$ Mpc $^{-1}$

Worse still: many cosmo results sensitive to H_0

→ how to show effect of uncertainties?

Parameterized Uncertainty:

introduce "little h" via

$$H_0 \equiv 100 \ h \ \text{km s}^{-1} \,\text{Mpc}^{-1}$$
 (3)

i.e., $h = H_0/100 \; \mathrm{km} \, \mathrm{s}^{-1} \, \mathrm{Mpc}^{-1}$

- back in the day: h = 0.5 1
- but now $h = 0.73 \pm 0.03$

The H_0 nightmare is over, but the literature is full of fossil little-h

 \rightarrow whenever you see it, think $h=0.73\approx 1/\sqrt{2}$