Astro 596/496 NPA Lecture 11 Sept. 18, 2009

Announcements:

• Preflight 2 was due at noon

Q: why don't neutrons in nuclei always decay? *Q*: why doesn't the proton decay?

• Problem Set 2 posted, due next Friday in class

Last time:

- Hubble's Law *Q: namely? characteristic scales?* www: data--Hubble the man vs Hubble the telescope
- cosmic scale factor a(t)
- *Q*: what is it? physical significance? units? value today?

 Q: connection between *a* and Hubble's law?

Cosmic Expansion and Cosmic Contents

- www: balloon analogy
- www: raisin cake analogy
- Q: what is tricky, imperfect about each analogy?
- Q: baryon number density n_{B} dependence on a?
- *Q:* nonrelativistic mass ("matter") density ρ_m dependence on *a*?
- Q: implications for early universe?

```
baryon number is conserved
```

...except at very high energies/early times? so in some volume $V\!\!:$

baryon number $N_{\rm B} = n_{\rm B}V = const$ fixed but $V \propto a^3$, so: $n_{\rm B} \propto a^{-3}$

similarly, in nonrelativistic limit:

energy conservation \rightarrow mass conservation $\Rightarrow | \rho_{\rm m} \propto a^{-3}$

definition: to cosmologist, matter \equiv non-relativistic matter today: $\rho_{matter}(t_0) \equiv \rho_{m,0}$ at other epochs (while still non-relativistic): $\rho_m = \rho_{m,0} a^{-3}$

in Early U: high densities \rightarrow high reaction rates \rightarrow processes which are unimportant (slow) now could have been fast

ω

Q: what about expansion effect on relativistic particles–e.g., photons?

Redshifts

quick-n-dirty: wavelengths are lengths! ...it's right there in the name! \rightarrow expansion stretches photon $\lambda \Rightarrow \lambda \propto a$

if emit photon at t_{em} , then at later times

$$\lambda(t) = \lambda_{\text{emit}} \frac{a(t)}{a(t_{\text{em}})} \tag{1}$$

if observe later, $\lambda_{obs} = \lambda_{em} a_{obs}/a_{em}$ measure redshift today:

$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}} = \frac{1 - a_{em}}{a_{em}} \Rightarrow a_{em} = a(z) = \frac{1}{1 + z}$$

4

Scale factor \leftrightarrow redshift

$$a = \frac{1}{\frac{1+z}{1+z}}$$
$$z = \frac{1}{a} - 1$$

Example: most distant quasar has z = 6.4www: SDSS QSO recordholder

For this quasar:

 \rightarrow scale factor a = 1/(1 + 6.4) = 0.135

interparticle (intergalactic) distances 13.5% of today!

 \rightarrow galaxies 1+6.4=7.4 times closer

squeezed into volumes $(7.4)^3 = 400$ times smaller!

 $^{\circ}$ Q: expansion effect on photon energies?

Redshifts and Photon Energies

in photon picture of light: $E_{\gamma} = hc/\lambda$

so in cosmological context photons have

$$E_{\gamma} \propto \frac{1}{a}$$
 (2)

 $\rightarrow \gamma$ energy redshifts

Consequences:

- \triangleright Q: photon energy density $\varepsilon(a)$?
- \triangleright if thermal radiation,
 - *Q*: $T \leftrightarrow \lambda$ connection?
- *Q*: expansion effect on *T*?

σ

Relativistic Species

Photon energy density: $\varepsilon = E_{\gamma} n_{\gamma}$ avg photon energy: $E_{\gamma} \propto a^{-1}$ photon number density: conserved $n_{\gamma} \propto a^{-3}$ (if no emission/absorption) \Rightarrow for relativistic species \equiv radiation $\varepsilon_{rad} \propto a^{-4}$

Thermal (blackbody) radiation: Wien's law: $T \propto 1/\lambda_{max}$ but since $\lambda \propto a \rightarrow$ then $T \propto 1/a$

Consequences:

1

- $\varepsilon_{\rm rad} \propto T^4$: Boltzmann/Planck!
- T decreases \rightarrow U cools! today: CMB $T_0 = 2.725 \pm 0.001$ K distant but "garden variety" quasar: z = 3"feels" T = 8 K (effect observed!)

Cosmodynamics

a(t) gives expansion history of the Universe which in turn tells how densities, temperatures change \rightarrow given a(t) can recover all of cosmic history!

but...

How do we know a(t)? Q: What controls how scale factor a(t) grow with time?

Cosmodynamics Computed

cosmic dynamics is evolution of a system which is

- gravitating
- homogeneous
- isotropic

Complete, correct treatment: General Relativity

 \rightarrow take GR! ...or Cosmology next semester

quick 'n dirty:
 Non-relativistic (Newtonian) cosmology
 pro: gives intuition, and right answer
 con: involves some ad hoc assumptions only justified by GR

Inputs:

- arbitrary cosmic time t
- cosmic mass density $\rho(t)$, spatially uniform
- cosmic pressure P(t): in general, comes with matter but for non-relativistic matter, P not important source of energy and thus mass ($E = mc^2$) and thus gravity so ignore: take P = 0 for now (really: $P \ll \rho c^2$)

Construction:

pick arbitrary point $\vec{r}_{center} = 0$, center of "comoving" sphere of some radius r(t)which always encloses some arbitrary but fixed mass

$$M(r) = \frac{4\pi}{3} r^3 \rho = const \tag{3}$$

10

a point on the sphere feels acceleration Q: what?

Newtonian Cosmodynamics

a point on the sphere feels acceleration

$$\ddot{\vec{r}} = \vec{g} = -\frac{GM}{r^2}\hat{r}$$
(4)

with pressure P = 0

multiply by $\dot{\vec{r}}$ and integrate:

$$\dot{\vec{r}} \cdot \frac{d}{dt} \dot{\vec{r}} = -GM \frac{\hat{r} \cdot d\vec{r}/dt}{r^2}$$
(5)

$$\frac{1}{2}\dot{r}^2 = \frac{GM}{r} + K = \frac{4\pi}{3}G\rho r^2 + K$$
(6)

 $\stackrel{\,\,}{_{L}}$ Q: physical significance of K? of it's sign?

Friedmann (Energy) Equation

introduce scale factor: $\vec{r}(t) = a(t)\vec{r}_0$ "energy" eqn: Friedmann eq.

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
(7)

we will see: full GR gives $K = r_0^2 (\kappa c^2/R^2)$ with parameters

- $\kappa = \pm 1, 0$, and
- const R is lengthscale: "curvature" of U.

In full GR:

12

▷ Friedmann eq. holds even for relativistic matter, but

$$\triangleright$$
 where $\rho = \sum_{\text{species},i} \varepsilon_i / c^2$: mass-energy density

Q:
$$a(t)$$
 behavior if $K = \kappa = 0$? if $\kappa \neq 0$?