Astro 596/496 NPA Lecture 11 Sept. 18, 2009

Announcements:

 \vdash

- Problem Set 2 due Friday
 Note on nuke reaction rate databases (all on course links):
 NACRE link now fixed; you are also welcome to use
 instead the more up-to-date Reaclib database at JINA
- Next semester, ASTR 596/496 PC: Physical Cosmology complementary to this course

Last time: Al Friedmann's amazing equation Q: Friedmann (energy) eq is...? Q: what factors are constant? what are variable?

Friedmann (Energy) Equation

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
(1)

variables change with time

- a: cosmic scale factor
- ρ : total cosmic mass-energy density
- constants fixed for all time
 - $\kappa = \pm 1$ or 0: sign of "energy" (curvature) term
 - *R*: characteristic lengthscale, $GR \rightarrow curvature$ scale

Q: how does expansion of U depend on contents of U? Q: how does expansion of U not depend on contents of U?

Q: what about acceleration $-\ddot{a}$?

N

Friedmann Acceleration Equation

Newtonian analysis gives \ddot{a} for $P \rightarrow 0$ In full GR: with $P \neq 0$, get Friedmann *acceleration* eq.

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G(\rho + 3P/c^2) \tag{2}$$

Pressure and Friedmann

ω

★ in "energy" (\dot{a}) eq.: *P* absent, even in full GR ★ in acceleration eq., GR → *P* present, same sign as ρ adds to "active gravitational mass"

Q: why? Q: contrast with hydrostatic equilibrium?

Friedmann energy eq is "equation of motion" for scale factor i.e., governs evolution of a(t).

To solve, need to know how ρ depends on a

Density Evolution

1st Law of Thermodynamics (PS 2):

$$d(\varepsilon a^3) = -Pd(a^3) \tag{3}$$

 ε is energy density, and $\rho \equiv \varepsilon/c^2$ (mass-energy equivalence)

can solve for $\rho(a)$ given $P(\rho)$: equation of state useful (though not most general) form:

$$P = w\varepsilon = w\rho c^2 \tag{4}$$

w is "equation of state parameter"*Q*: *w* for matter? radiation?

for constant w:

$$d(\rho a^3) = -w\rho d(a^3) \Rightarrow \rho \propto a^{-3(1+w)}$$

Q: implications for matter? radiation?

Cosmic Constituents

In general:

 $P = w\varepsilon = w\rho c^2 \Rightarrow \varepsilon = \rho c^2 \propto a^{-3(1+w)}$

Matter (non-relativistic, a.k.a. "dust"): $P_{\rm m} \ll \varepsilon_{\rm m} \approx \rho_{\rm m} c^2 \Rightarrow P_{\rm m} \simeq 0 \ (w_{\rm m} \simeq 0)$ $\Rightarrow \rho_{\rm m} \propto a^{-3}$

Radiation (relativistic species): $\gamma + 3\nu\bar{\nu}$ today $P_{\text{rad}} = \varepsilon_{\text{rad}}/3 = 1/3 \ \rho_{\text{rad}}c^2 \Rightarrow w_{\text{rad}} = 1/3$ $\rightarrow \rho_{\text{rad}} \propto a^{-4}$

Cosmo constant (Λ , "vacuum energy"): $P_{\Lambda} = -\varepsilon_{\Lambda} = -\rho_{\Lambda}c^2 \rightarrow w_{\Lambda} = -1$ $\rho_{\Lambda} = const$ (indep of *a*!) *Q*: why is this bizarre?

СЛ

Q: if all these components exist, which dominates at late times? early times?

Cosmic Dynamic Epochs

```
Generally: \rho_{tot} = \rho_m + \rho_{rad} + \rho_\Lambda
So: 3 (4?) major epochs
www: Omega plot
```

- Rad. dominated: $\rho_{tot} \approx \rho_{rad}$ $\dot{a}/a \propto a^{-2} \Rightarrow a \propto t^{1/2}$
- Matter dominated: $\rho_{tot} \approx \rho_m$ $\dot{a}/a \propto a^{-3/2} \Rightarrow a \propto t^{2/3}$
- Curvature dominated: ρ term \ll curv. term ($\kappa = -1$) $\dot{a}/a \propto a^{-1} \Rightarrow a \propto t$
- Λ dominated:

σ

 $\dot{a}/a = H = const \Rightarrow a \propto e^{Ht}$

Special Epochs: Changing Dominance

Matter, radiation, Λ , curvature all appear in Friedmann with different a dependences

- \rightarrow dominant species trade off over time
- \rightarrow special epochs when one ''overtakes'' another

example: matter-radiation equality:

when
$$\rho_{\rm m} = \rho_{\rm rad}$$

 $\rho_{\rm rad} = \rho_{\rm rad,0}a^{-4}$
 $\rho_{\rm m} = \rho_{\rm m,0}a^{-3}$
eq: $\rho_{\rm M} = \rho_{\rm rad}$
when $a_{\rm eq} = \rho_{\rm rad,0}/\rho_{\rm m,0} \sim 3 \times 10^{-4}$

7

.

Matter and Curvature

Consider a universe with matter and (maybe) curvature only

What if $\kappa = 1$?

 \Rightarrow positively curved \rightarrow "spherelike" geometry

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho_0 a^{-3} - \frac{c^2}{R^2}a^{-2}$$

a cannot grow without bound

- Q: why? Q: what is a_{max} ?
- Q: why are we sure that U recollapses after $t(a_{max})$?
- $^{\circ\circ}$ fate: collapse continues back to a = 0: "big crunch!"

What if $\kappa = -1$? \Rightarrow "hyperbolic" geometry

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho_0 a^{-3} + \frac{c^2}{R^2}a^{-2}$$

a grows without bound *Q*: why? fate: expand forever-"big chill" at large *t*, "curvature-dominated": $a(t) \rightarrow ct/R$ *Q*: why?

Q: how can we tell what our κ value is?

Geometry, Density, and Dynamics

rewrite Friedmann

$$1 = \frac{8\pi G\rho}{3H^2} - \frac{\kappa c^2}{R^2} (aH)^{-2} = \Omega - \frac{\kappa c^2}{R^2} (aH)^{-2}$$
(5)

where the **density parameter** is

$$\Omega = \frac{\rho}{\rho_{\rm crit}} \tag{6}$$

and the critical density is

$$\rho_{\rm crit} = \frac{3H^2}{8\pi G} \tag{7}$$

Note: for a particular density component ρ_i corresponding density parameter is $\Omega_i = \rho_i / \rho_{crit}$ and thus total sums all species: $\Omega \equiv \Omega_{tot} = \sum_i \Omega_i$ Note that

$$\kappa = \left(\frac{aHR}{c}\right)^2 (\Omega - 1) = (\text{pos def}) \times (\Omega - 1)$$

fate* (and geometry) of Universe $\Leftrightarrow \kappa \Leftrightarrow \Omega - 1$

if $\Omega = 1$ ever:

•
$$\Omega = 1$$
 always; $\kappa = 0 \rightarrow$ expand forever

if $\Omega < 1$ ever:

• $\Omega < 1$ always; $\kappa = -1 \rightarrow$ expand forever

if $\Omega > 1$ ever:

11

• $\Omega > 1$ always; $\kappa = +1 \rightarrow$ recollapse

Q: but if Ω just a stand-in for κ , why useful?

 $^{*}\kappa$ always gives geometry, but κ and fate decoupled if $\Lambda \neq 0$