Astro 596/496 NPA Lecture 13 Sept. 23, 2009

Announcements:

- Problem Set 2 due next time
- Note on nuke reaction rate databases (all on course links): NACRE link now fixed; you are also welcome to use instead the more up-to-date Reaclib database at JINA
- Note on NACRE: tabulated rates given for recommended "adopted" (ado) and for high and low limits
- Medium Energy Seminar today: 4pm Loomis 464
 Mark Chen "Neutrino Physics Beyond SNO"
- \vdash Q: what is meant by Ω? Ω₀? Ω_{matter}? Q: who cares?

Density Determines Destiny

can determine $\Omega_0 = \rho_0 / \rho_{crit,0} = 8\pi G \rho_0 / 3H_0^2 \propto \rho_0 / H_0^2$ from *locally measurable quantities* ρ_0 and H_0 : \rightarrow cosmic fate & geometry knowable! ...and become *experimental* questions!

In particular: Fate (and geometry) of U. depend on $\Omega_0 = \rho_{tot,0} / \rho_{crit,0}$, where **critical density** is

$$\rho_{\text{crit},0} = 3H_0^2/8\pi G$$

= $1.9 \times 10^{-29} h^2 \text{ g/cm}^{-3} \approx 10^{-29} \text{ g/cm}^{-3}$
= $2.78 \times 10^{11} h^2 M_{\odot} \text{ Mpc}^{-3} \approx 1.4 \times 10^{11} M_{\odot} \text{ Mpc}^{-3}$
 $\approx 6 \text{ H atoms m}^{-3}$

Empirical question: is $\rho_{tot,0}$ bigger or smaller than this number?

\star Density is destiny! Weight is fate! Q: how can we determine Ω_0 ? What will be challenging?

N

What is Ω_0 ?

Procedure 0: Pure Theory

In general:

ω

 $\Omega = \rho / \rho_{\rm crit} \sim \rho(t) / H^2(t)$ evolves with time

But: if ever $\Omega = 1$, then $\Omega = 1$ always Otherwise: $\Omega \rightarrow 0$ or ∞ Q: what physically occurs at these limits?

Thus: $\Omega = 1$ is only stable value!

```
Experiment: look around the room!
obviously \Omega \neq 0, \infty
\Rightarrow we must have \Omega = 1 !
or else conspiracy: we live just when \Omega \sim 1
"Dicke coincidence"
```

Procedure I: Mass-to-Light

- 1. find fair sample of the Universe Q: meaning?
- 2. want: M, $V \rightarrow \rho$

but telescopes directly measure energy flux F

which gives light *power* output: *luminosity* $L = 4\pi d^2 F$

- find cosmic luminosity density $\mathcal{L} = L/V$
- find a "mass-to-light ratio" $M/L \equiv \Upsilon$
- \Rightarrow combine to solve for $\rho = \Upsilon \mathcal{L}$

Galaxy surveys: $\mathcal{L} \sim 2 \times 10^8 \ h \ L_{\odot} \ Mpc^{-3}$

Need "fair sample" of mass-to-light Υ

- galaxy dark halos: flat rotation curves $\to \Upsilon_{halo} \lesssim 25 h M_\odot/L_\odot$ $\to \Omega_{halo} \lesssim 0.02 \ll 1$
- Clusters: $\Upsilon_{cluster} \sim 300 h M_{\odot}/L_{\odot}$
- www: cluster lens

4

 $\rightarrow \Omega_{cluster} \sim 0.25 h^{-1} \sim 0.3$ Q: implications?

Procedure II: Microwave background anisotropies

Cosmic Microwave Background (CMB)

literally is a *image* of the Universe when photons last scattered with matter tiny T fluctuations seen: $\delta T \rightarrow$ small matter inhomogeneities $\delta \rho$

angular pattern of δT sensitive to cosmic geometry

www: WMAP results

СЛ

 $\Omega_0 = 1.02 \pm 0.02!$ consistent with $\Omega_0 = 1!!$

to within our ability to measure: $\kappa = 0$: the universe is spatially Euclidean: "flat"

but: WMAP also confirms $\Omega_{matter} \approx 0.30$ (including DM!) *Q: and so?*

Dark Energy and Cosmic Acceleration

CMB (WMAP): \star flatness $\rightarrow \Omega_{tot} = 1$ to within $\sim 1\%$ $\star \Omega_{matter} \approx 0.30$ (including DM!)

Most of the universe today is something else: $\rightarrow \Omega_{other} = 0.70$?!?

Stranger still: measures of recent expansion history H(t)e.g., distant Type Ia supernova explosions reveal that U. is **accelerating!** ...requiring $\Lambda \neq 0$ (or dark energy) such that $\Omega_{\Lambda} \approx 0.7 \rightarrow$ independent evidence!

σ

Q: so what's really going on?

Dark Matter and Dark Energy: What's the Deal?

Multiple lines of evidence suggest
★ most mass-energy today is in dark energy!?!
★ most matter is in dark matter!?!
the visible universe is a small fraction of the total

Hey hey, my my [...] There's more to the picture Than meets the eye Hey hey, my my – Cosmologist Niel Young

Surely this has implications for particle physics *Q: what properties must dark matter have? what would this mean for particle dark matter? Q: how about dark energy?*

The Invisible Universe and Fundamental Physics

Dark Matter-what we know

- it exists
- is dark: can't have been detected yet
- is matter: $w_{dm} \approx 0$
- If DM is relic from early universe, DM particles must be
- ▷ stable (or long-lived)
- weakly interacting
- > non-relativistic today

Good news:

particle theory offers many well-motivated DM candidates

 $_{\mbox{\scriptsize ∞}}$ fitting this description

Dark Energy-what we know

- it exists
- is dark
- is energy, i.e., w < 0

implications for fundamental physics

need substance with $P \sim -\varepsilon$: pressure huge, negative!

but non-relativistic matter: $0 < w \ll 1$

relativistic matter: w = 1/3

ightarrow suggests any particle gas has 0 $\leq w \leq 1/3$

Q: which means?

Bad news: particle theory taken by surprise!no well-motivated dark energy candidates "off the shelf"Good news: job security for cosmologists!

Cosmic Archaelogy: The Early Universe

is particle physics the key to the dark side?

When are high-energy processes/particles abundant?

- Universe has temperature now: CMB $T_0 = 2.725$ K \Rightarrow cosmic matter was once in thermal equilibrium
- in thermal bath, typical particle energy is $E \sim kT$
- cosmic temperature $T \propto 1/a = 1 + z$

Therefore:

10

• when primordial soup at high- $E \rightarrow \text{high} T \rightarrow \text{early times}$

 \star the early universe is the realm of particle physics

 \star cosmic *particle* history \Leftrightarrow cosmic *thermal* history

Interlude

Cosmologist W. Allen Annie Hall (1977)