
Astro 596/496 NPA

Lecture 14

Sept. 25, 2009

Announcements:

• Problem Set 2 due

• Preflight 3 posted; due noon next Friday

Last time:

⋆ most cosmic mass-energy today is in dark energy!?!

⋆ most cosmic matter is in dark matter!?!

Surely this has implications for particle physics

Q: what properties must dark matter have?

what would this mean for particle dark matter?

Q: how about dark energy?
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The Invisible Universe and Fundamental Physics

Dark Matter–what we know

• it exists

• is dark: can’t have been detected yet

• is matter: wdm ≈ 0

If DM is relic from early universe, DM particles must be

⊲ stable (or long-lived)

⊲ weakly interacting

⊲ non-relativistic today

Good news:

particle theory offers many well-motivated DM candidates

fitting this description
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Dark Energy–what we know

• it exists

• is dark

• is energy, i.e.,w < 0

Major implications for fundamental physics:

need substance with P ∼ −ε: pressure huge, negative!

but non-relativistic matter: 0 < w ≪ 1

relativistic matter: w = 1/3

→ suggests any particle gas has 0 ≤ w ≤ 1/3

Q: which means?

Bad news: particle theory taken by surprise!

no well-motivated dark energy candidates “off the shelf”

Good news: job security for cosmologists!
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Cosmic Archaelogy: The Early Universe

is particle physics the key to the dark side?

When are high-energy processes/particles abundant?

• Universe has temperature now: CMB T0 = 2.725 K

⇒ cosmic matter was once in thermal equilibrium

• in thermal bath, typical particle energy is E ∼ kT

• cosmic temperature T ∝ 1/a = 1 + z

Therefore:

• when primordial soup at high-E → high T → early times

⋆ the early universe is the realm of particle physics

⋆ cosmic particle history ⇔ cosmic thermal history
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Cosmic Statistical Mechanics

Consider a “gas” of quantum particles (massive or massless)

states “smeared out” around classical ~x and ~p values

define “occupation number” or “distribution function” f(~x, ~p):

number of particles in each phase space “cell”:

dN = gf(~x, ~p)
d3~x d3~p

(2πh̄)3
= gf(~x, ~p)

dVspace dVmomentum

(2πh̄)3
(1)

where g counts internal (spin/helicity) degrees of freedom

and dx dp/2πh̄ counts # of quantum states per cell

particle phase space occupation f determines bulk properties

Q: how? Hint–what’s # particles per unit spatial volume?
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for a given spatial volume element dVspace = d3~x = dx dy dz

number per unit (spatial) volume–i.e., number density–is

dn =
dN

d3~x
gf(~x, ~p)

d3~p

(2πh̄)3
(2)

→ f gives distribution of momenta at each spatial point

Q: what’s f for gas of (classical) particles all at rest?

Q: f for a (classical) particle beam–directed, monoenergetic?

Q: what’s f for (classical) harmonic oscillator ensemble?

Q: given f , how to formally compute

bulk properties n, ε, P?
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Number density

n(~x) =
d3N

d3x
=

g

(2πh̄)3

∫

d3~p f(~p, ~x) (3)

Mass-energy density

ε(~x) = ρ(~x)c2 = 〈E〉 n =
g

(2πh̄)3

∫

d3~p E(p) f(~p, ~x) (4)

Pressure

P(~x) = 〈pivi〉directioni n =
〈pv〉

3
n =

g

(2πh̄)3

∫

d3~p
p v(p)

3
f(~p, ~x)

(5)

Q: these expressions are general–simplifications in FLRW?
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FRLW universe:

• homogeneous → no ~x dep

• isotropic → only ~p magnitude important → f(~p) = f(p)

in thermal equilibrium:

⊲ Boson occupation number is Bose-Einstein dist’n

fb(p) =
1

e(E−µ)/kT − 1
(6)

⊲ Fermion occupation number is Fermi-Dirac dist’n

ff(p) =
1

e(E−µ)/kT + 1
(7)

Note: µ is “chemical potential” or “Fermi energy”

µ = µ(T) but is independent of E

If E = Etot, µ ≫ T : both → f = e−(E−µ)/kT ≪ 1

→ Boltzmann distribution
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Chemical Potential & Number Conservation

For a particle species in thermal equilibrium

f(p;T, µ) =
1

e(E−µ)/kT ± 1
(8)

What is µ, and what does it mean physically?

First, what if µ = 0

then f, n, P depend only on T

→ everything at same T has same ρ, P !

sometimes true! Q: examples? but not always!

but n often conserved

→ fixed by initial conditions, not T

→ if particle number conserved, µ determined

by solving ncons = n(µ, T) → µ(ncons, T)

so: µ 6= 0 ⇔ particle number conservation
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if “chemical” equilibrium:

• rxns change particle numbers among species

• equilibrium: forward rate = reverse rate

a + b + · · · ↔ A + B + · · ·

then
∑

initial particlesi

µi =
∑

final particlesf

µf (9)

sum of chemical potentials “conserved”
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Radiation and Matter: The Life of a Particle Species

A given type of particle can act

sometimes as cosmic matter

other times as cosmic radiation

Q: criteria?

Q: radiation species today?

Q: when did this list last change? when before that?
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Equilibrium Thermodynamics

Gas of mass m particles at temp T :

n, ρ, and P in general complicated

because of E(p) =
√

p2 + m2

but simplify in ultra-rel and non-rel limits

→ controlled by m vs T comparison

Non-Relativistic Species

E(p) ≃ mc2 + p2/2m, T ≪ m

for µ ≪ T : Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter

energy density, number density vs T?
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Non-Relativistic Species: Cosmic Matter

In the limit E(p) ≃ mc2 + p2/2m, T ≪ m

n = g

(

mkT

2πh̄2

)3/2

e−(mc2−µ)/kT (10)

ρc2 = mc2 n +
3

2
kT n ≃ εrestmass = mc2 n (11)

P =
2

3
εkinetic = nkT ≪ ρc2 (12)

Note:

• recover ideal gas law!

• P ≪ ρc2→ wnon−rel ≪ 1 ≈ 0

• if particles not conserved: µ = 0

Q: behavior of n(T)? why isn’t this crazy?

• if particles are conserved: µ(T) 6= 0

→ this sets number density implicitly

i.e., n(T, µ) = ncons sets values of µ

in cosmo setting: nnon−rel,cons ∝ a−3, ρnon−rel,cons ≃ mn ∝ a−3
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Ultra-Relativistic Species: Cosmic Radiation

take limit E(p) ≃ cp ≫ mc2 (i.e., kT ≫ mc2)

Also take µ = 0 (µ ≪ kT)

note: now contributions from states with E, µ ≪ T

expect bosons, fermions → different n, ρ, P for same T

Q: why? Hint–think about form of fb and ff
Q: which particle type should have larger n, ρ, P at fixed T?

energy density, number density?

Q: you know this already for bosons!
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for relativistic bosons

nrel,b = g
ζ(3)

π2

(

kT

h̄c

)3

∝ T3

ρrel,bc2 = g
π2

30

(kT)4

(h̄c)3
∝ T4

where

ζ(3) =
∞
∑

n=1

1

n3
= 1 +

1

23
+

1

33
+ · · · = 1.20206 . . . (13)

relativistic fermions:

nrel,f =
3

4
nrel,b (14)

ρrel,f =
7

8
ρrel,b (15)

so n ∝ T3 and ρ ∝ T4 for both

e.g., CMB today: nγ,0 = 411 cm−3

also nrel,f < nrel,b and ρrel,f < ρrel,b (Pauli)
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For both relativistic bosons and fermions (with µ ≪ T):

Prel =
1

3
ρrelc

2 (16)

⋆ holds for both fermions and bosons!

e.g., Prel,f = ρrel,f/3 < Prel,b

⋆ shows that relativistic particles have wrel = +1/3

⋆ P ∝ T4
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Radiation Evolution

Cosmic radiation density sums over relativistic species:

ρrel =
∑

i

ρrel,i (17)

=
π2

30
T4





∑

bosons

gb

(

Tb

T

)4

+
∑

fermions

7

8
gf

(

Tf

T

)4


 (18)

= g∗(T)
π2

30
T4 (19)

where

• T is for some reference species, usually photons

• g∗ counts “relativistic degrees of freedom”

e.g., photons contribute g∗,γ = 2

left-handed νν̄ contributes g∗,ν = 2 · 7/8 = 7/4
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Particle Census and the Radiation Era

In radiation-dominated early universe:

(

ȧ

a

)2

≈ 8πGρrel/3 ∝ g∗(T) T4 (20)

⋆ early expansion history depends on

number, types of relativistic particles

⋆ microphysics (particle content) of the Universe

controls macroscopic cosmic dynamics

⋆ ...so any measure of early expansion rate

is a probe of particle physics!

... as we will soon see
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Director’s Cut Extras

1
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Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn’t really need to be cubic)

contain “gas” of N particles: can be massive or massless

particles collide with walls, bounce back elastically

particles exert force on wall ↔ wall on particles

this lead to bulk pressure

focus on one particle, and its component of motion

in one (arbitrary) axis x: speed vx, momentum px

• elastic collision: px,init = −px,fin → δpx = 2px

• collision time interval for same wall: δtx = vx/2L

• single-particle momentum transfer (force) per wall:

Fx = δpx/δtx = pxvx/L

• single-particle force per wall area:

P = Fx/L2 = pxvx/L3 = pxvx/V

Q: total pressure?
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total pressure is sum over all particles:

P =
N
∑

particles ℓ=1

p
(ℓ)
x v

(ℓ)
x

V
(21)

can rewrite in terms of an average momentum flux

P =
N

V

∑N
ℓ=1 p

(ℓ)
x v

(ℓ)
x

N
= 〈pxvx〉n (22)

where n = N/V is number density

〈px〉n would be average momentum density along x

and 〈pxvx〉n is average momentum flux along x

if particle gas has isotropic momenta, then

〈pxvx〉 = 〈pyvy〉 = 〈pzvx〉 =
1

3
〈~p · ~v〉 =

1

3
〈pv〉 (23)

so P = 1
3〈pv〉n
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Temperature Evolution Revisited

If in therm eq, maintain photon occ. #

f(p) =
1

ep/T − 1
(24)

but cp = hν = hc/λ ∝ 1/a(t):

⇒ p = p0/a

w/o interactions, const # γ per mode p

⇒ f(p) = const

⇒ p(t)/T(t) = p0/T0

⇒ T/T0 = p/p0 = 1/a = 1 + z

e.g., at z = 3, CMB T = 4T0 ≃ 11 K

(measured in QSO absorption line system!)

recall: used w = 1/3 to show ργ ∝ a−4

but blackbody ργ ∝ T4

together T ∝ 1/a (OK!)
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