Astro 596/496 NPA
 Lecture 14
 Sept. 25, 2009

Announcements:

- Problem Set 2 due
- Preflight 3 posted; due noon next Friday

Last time:

* most cosmic mass-energy today is in dark energy!?!
* most cosmic matter is in dark matter!?!

Surely this has implications for particle physics Q: what properties must dark matter have?
what would this mean for particle dark matter?
Q : how about dark energy?

The Invisible Universe and Fundamental Physics

Dark Matter-what we know

- it exists
- is dark: can't have been detected yet
- is matter: $w_{\mathrm{dm}} \approx 0$

If DM is relic from early universe, DM particles must be
\triangleright stable (or long-lived)
\triangleright weakly interacting
\triangleright non-relativistic today

Good news:
particle theory offers many well-motivated DM candidates
fitting this description

Dark Energy-what we know

- it exists
- is dark
- is energy, i.e., $w<0$

Major implications for fundamental physics:
need substance with $P \sim-\varepsilon$: pressure huge, negative!
but non-relativistic matter: $0<w \ll 1$
relativistic matter: $w=1 / 3$
\rightarrow suggests any particle gas has $0 \leq w \leq 1 / 3$ Q : which means?

Bad news: particle theory taken by surprise!
no well-motivated dark energy candidates "off the shelf" Good news: job security for cosmologists!

Cosmic Archaelogy: The Early Universe

is particle physics the key to the dark side?

When are high-energy processes/particles abundant?

- Universe has temperature now: CMB $T_{0}=2.725 \mathrm{~K}$ \Rightarrow cosmic matter was once in thermal equilibrium
- in thermal bath, typical particle energy is $E \sim k T$
- cosmic temperature $T \propto 1 / a=1+z$

Therefore:

- when primordial soup at high- $E \rightarrow$ high $T \rightarrow$ early times
* the early universe is the realm of particle physics
\star cosmic particle history \Leftrightarrow cosmic thermal history

Cosmic Statistical Mechanics

Consider a "gas" of quantum particles (massive or massless) states "smeared out" around classical \vec{x} and \vec{p} values
define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell":

$$
\begin{equation*}
d N=g f(\vec{x}, \vec{p}) \frac{d^{3} \vec{x} d^{3} \vec{p}}{(2 \pi \hbar)^{3}}=g f(\vec{x}, \vec{p}) \frac{d V_{\text {space }} d V_{\text {momentum }}}{(2 \pi \hbar)^{3}} \tag{1}
\end{equation*}
$$

where g counts internal (spin/helicity) degrees of freedom and $d x d p / 2 \pi \hbar$ counts \# of quantum states per cell
particle phase space occupation f determines bulk properties Q: how? Hint-what's \# particles per unit spatial volume?
for a given spatial volume element $d V_{\text {space }}=d^{3} \vec{x}=d x d y d z$ number per unit (spatial) volume-i.e., number density-is

$$
\begin{equation*}
d n=\frac{d N}{d^{3} \vec{x}} g f(\vec{x}, \vec{p}) \frac{d^{3} \vec{p}}{(2 \pi \hbar)^{3}} \tag{2}
\end{equation*}
$$

$\rightarrow f$ gives distribution of momenta at each spatial point

Q: what's f for gas of (classical) particles all at rest?
Q: f for a (classical) particle beam-directed, monoenergetic?
Q: what's f for (classical) harmonic oscillator ensemble?

Q: given f, how to formally compute bulk properties n, ε, P ?

Number density

$$
\begin{equation*}
n(\vec{x})=\frac{d^{3} N}{d^{3} x}=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} f(\vec{p}, \vec{x}) \tag{3}
\end{equation*}
$$

Mass-energy density

$$
\begin{equation*}
\varepsilon(\vec{x})=\rho(\vec{x}) c^{2}=\langle E\rangle n=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} E(p) f(\vec{p}, \vec{x}) \tag{4}
\end{equation*}
$$

Pressure

$$
\begin{equation*}
P(\vec{x})=\left\langle p_{i} v_{i}\right\rangle_{\text {direction } i} n=\frac{\langle p v\rangle}{3} n=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} \frac{p v(p)}{3} f(\vec{p}, \vec{x}) \tag{5}
\end{equation*}
$$

Q: these expressions are general-simplifications in FLRW?

FRLW universe:

- homogeneous \rightarrow no \vec{x} dep
- isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p})=f(p)$
in thermal equilibrium:
\triangleright Boson occupation number is Bose-Einstein dist'n

$$
\begin{equation*}
f_{\mathrm{b}}(p)=\frac{1}{e^{(E-\mu) / k T}-1} \tag{6}
\end{equation*}
$$

\triangleright Fermion occupation number is Fermi-Dirac dist'n

$$
\begin{equation*}
f_{\mathrm{f}}(p)=\frac{1}{e^{(E-\mu) / k T}+1} \tag{7}
\end{equation*}
$$

Note: μ is "chemical potential" or "Fermi energy" $\mu=\mu(T)$ but is independent of E
∞
If $E=E_{\text {tot }}, \mu \gg T$: both $\rightarrow f=e^{-(E-\mu) / k T} \ll 1$
\rightarrow Boltzmann distribution

Chemical Potential \& Number Conservation

For a particle species in thermal equilibrium

$$
\begin{equation*}
f(p ; T, \mu)=\frac{1}{e^{(E-\mu) / k T} \pm 1} \tag{8}
\end{equation*}
$$

What is μ, and what does it mean physically?
First, what if $\mu=0$
then f, n, P depend only on T
\rightarrow everything at same T has same ρ, P !
sometimes true! Q: examples? but not always!
but n often conserved
\rightarrow fixed by initial conditions, not T
\rightarrow if particle number conserved, μ determined
${ }^{\circ}$ by solving $n_{\text {cons }}=n(\mu, T) \rightarrow \mu\left(n_{\text {cons }}, T\right)$
so: $\mu \neq 0 \Leftrightarrow$ particle number conservation
if "chemical" equilibrium:

- rxns change particle numbers among species
- equilibrium: forward rate $=$ reverse rate $a+b+\cdots \leftrightarrow A+B+\cdots$ then

$$
\sum_{\text {initial particles } i} \mu_{i}=\sum_{\text {final particles } f} \mu_{f}
$$

sum of chemical potentials "conserved"

Radiation and Matter: The Life of a Particle Species

A given type of particle can act
sometimes as cosmic matter
other times as cosmic radiation

Q: criteria?
$Q:$ radiation species today?
Q: when did this list last change? when before that?

Equilibrium Thermodynamics

Gas of mass m particles at temp T :
n, ρ, and P in general complicated
because of $E(p)=\sqrt{p^{2}+m^{2}}$
but simplify in ultra-rel and non-rel limits
\rightarrow controlled by m vs T comparison

Non-Relativistic Species

$E(p) \simeq m c^{2}+p^{2} / 2 m, T \ll m$
for $\mu \ll T$: Maxwell-Boltzmann, same for Boson, Fermions
for non-relativistic particles $=$ matter
$\stackrel{\rightharpoonup}{\mathrm{N}}$ energy density, number density vs T ?

Non-Relativistic Species: Cosmic Matter
In the limit $E(p) \simeq m c^{2}+p^{2} / 2 m, T \ll m$

$$
\begin{align*}
n & =g\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m c^{2}-\mu\right) / k T} \tag{10}\\
\rho c^{2} & =m c^{2} n+\frac{3}{2} k T n \simeq \varepsilon_{\text {rest mass }}=m c^{2} n \tag{11}\\
P & =\frac{2}{3} \varepsilon_{\text {kinetic }}=n k T \ll \rho c^{2} \tag{12}
\end{align*}
$$

Note:

- recover ideal gas law!
- $P \ll \rho c^{2} \rightarrow w_{\text {non-rel }} \ll 1 \approx 0$
- if particles not conserved: $\mu=0$
Q : behavior of $n(T)$? why isn't this crazy?
- if particles are conserved: $\mu(T) \neq 0$
\rightarrow this sets number density implicitly
i.e., $n(T, \mu)=n_{\text {cons }}$ sets values of μ
in cosmo setting: $n_{\text {non-rel }, \text { cons }} \propto a^{-3}, \rho_{\text {non-rel }, \text { cons }} \simeq m n \propto a^{-3}$

Ultra-Relativistic Species: Cosmic Radiation

take limit $E(p) \simeq c p \gg m c^{2}$ (i.e., $k T \gg m c^{2}$)
Also take $\mu=0(\mu \ll k T)$
note: now contributions from states with $E, \mu \ll T$
expect bosons, fermions \rightarrow different n, ρ, P for same T
Q: why? Hint-think about form of f_{b} and f_{f}
Q: which particle type should have larger n, ρ, P at fixed T ?
energy density, number density?
Q: you know this already for bosons!
for relativistic bosons

$$
\begin{aligned}
n_{\mathrm{rel}, \mathrm{~b}} & =g \frac{\zeta(3)}{\pi^{2}}\left(\frac{k T}{\hbar c}\right)^{3} \propto T^{3} \\
\rho_{\mathrm{rel}, \mathrm{~b}} c^{2} & =g \frac{\pi^{2}}{30} \frac{(k T)^{4}}{(\hbar c)^{3}} \propto T^{4}
\end{aligned}
$$

where

$$
\begin{equation*}
\zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=1.20206 \ldots \tag{13}
\end{equation*}
$$

relativistic fermions:

$$
\begin{align*}
n_{\mathrm{rel}, \mathrm{f}} & =\frac{3}{4} n_{\mathrm{rel}, \mathrm{~b}} \tag{14}\\
\rho_{\mathrm{rel}, \mathrm{f}} & =\frac{7}{8} \rho_{\mathrm{rel}, \mathrm{~b}} \tag{15}
\end{align*}
$$

so $n \propto T^{3}$ and $\rho \propto T^{4}$ for both
ज
e.g., CMB today: $n_{\gamma, 0}=411 \mathrm{~cm}^{-3}$
also $n_{\text {rel }, \mathrm{f}}<n_{\text {rel, }, \mathrm{b}}$ and $\rho_{\text {rel,f }}<\rho_{\text {rel }, \mathrm{b}}$ (Pauli)

For both relativistic bosons and fermions (with $\mu \ll T$):

$$
\begin{equation*}
P_{\text {rel }}=\frac{1}{3} \rho_{\mathrm{rel}} c^{2} \tag{16}
\end{equation*}
$$

* holds for both fermions and bosons!
e.g., $P_{\text {rel, }, \mathrm{f}}=\rho_{\text {rel, }, \mathrm{f}} / 3<P_{\text {rel, }, \mathrm{b}}$
* shows that relativistic particles have $w_{\text {rel }}=+1 / 3$
* $P \propto T^{4}$

Radiation Evolution

Cosmic radiation density sums over relativistic species:

$$
\begin{align*}
\rho_{\text {rel }} & =\sum_{i} \rho_{\text {rel }, i} \tag{17}\\
& =\frac{\pi^{2}}{30} T^{4}\left[\sum_{\text {bosons }} g_{\mathrm{b}}\left(\frac{T_{\mathrm{b}}}{T}\right)^{4}+\sum_{\text {fermions }} \frac{7}{8} g_{\mathrm{f}}\left(\frac{T_{\mathrm{f}}}{T}\right)^{4}\right] \tag{18}\\
& =g_{*}(T) \frac{\pi^{2}}{30} T^{4} \tag{19}
\end{align*}
$$

where

- T is for some reference species, usually photons
- g_{*} counts "relativistic degrees of freedom"
e.g., photons contribute $g_{*, \gamma}=2$
$\stackrel{\rightharpoonup}{v} \quad$ left-handed $\nu \bar{\nu}$ contributes $g_{*, \nu}=2 \cdot 7 / 8=7 / 4$

Particle Census and the Radiation Era

In radiation-dominated early universe:

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right)^{2} \approx 8 \pi G \rho_{\mathrm{rel}} / 3 \propto g_{*}(T) T^{4} \tag{20}
\end{equation*}
$$

\star early expansion history depends on
number, types of relativistic particles
\star microphysics (particle content) of the Universe
controls macroscopic cosmic dynamics

* ...so any measure of early expansion rate
is a probe of particle physics!
... as we will soon see

Director's Cut Extras

Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn't really need to be cubic)
contain "gas" of N particles: can be massive or massless
particles collide with walls, bounce back elastically
particles exert force on wall \leftrightarrow wall on particles
this lead to bulk pressure
focus on one particle, and its component of motion in one (arbitrary) axis x : speed v_{x}, momentum p_{x}

- elastic collision: $p_{x, \text { init }}=-p_{x, f i n} \rightarrow \delta p_{x}=2 p_{x}$
- collision time interval for same wall: $\delta t_{x}=v_{x} / 2 L$
- single-particle momentum transfer (force) per wall: $F_{x}=\delta p_{x} / \delta t_{x}=p_{x} v_{x} / L$
- single-particle force per wall area:
$P=F_{x} / L^{2}=p_{x} v_{x} / L^{3}=p_{x} v_{x} / V$
Q: total pressure?
total pressure is sum over all particles:

$$
\begin{equation*}
P=\sum_{\text {particles } \ell=1}^{N} \frac{p_{x}^{(\ell)} v_{x}^{(\ell)}}{V} \tag{21}
\end{equation*}
$$

can rewrite in terms of an average momentum flux

$$
\begin{equation*}
P=\frac{N}{V} \frac{\sum_{\ell=1}^{N} p_{x}^{(\ell)} v_{x}^{(\ell)}}{N}=\left\langle p_{x} v_{x}\right\rangle n \tag{22}
\end{equation*}
$$

where $n=N / V$ is number density
$\left\langle p_{x}\right\rangle n$ would be average momentum density along x and $\left\langle p_{x} v_{x}\right\rangle n$ is average momentum flux along x
if particle gas has isotropic momenta, then

$$
\begin{align*}
& \qquad\left\langle p_{x} v_{x}\right\rangle=\left\langle p_{y} v_{y}\right\rangle=\left\langle p_{z} v_{x}\right\rangle=\frac{1}{3}\langle\vec{p} \cdot \vec{v}\rangle=\frac{1}{3}\langle p v\rangle \tag{23}\\
& \text { so } P=\frac{1}{3}\langle p v\rangle n
\end{align*}
$$

Temperature Evolution Revisited

If in therm eq, maintain photon occ. \#

$$
\begin{equation*}
f(p)=\frac{1}{e^{p / T}-1} \tag{24}
\end{equation*}
$$

but $c p=h \nu=h c / \lambda \propto 1 / a(t)$:
$\Rightarrow p=p_{0} / a$
w/o interactions, const \# γ per mode p
$\Rightarrow f(p)=$ const
$\Rightarrow p(t) / T(t)=p_{0} / T_{0}$
$\Rightarrow T / T_{0}=p / p_{0}=1 / a=1+z$
e.g., at $z=3, \mathrm{CMB} T=4 T_{0} \simeq 11 \mathrm{~K}$ (measured in QSO absorption line system!)
recall: used $w=1 / 3$ to show $\rho_{\gamma} \propto a^{-4}$
N but blackbody $\rho_{\gamma} \propto T^{4}$
together $T \propto 1 / a(O K!)$

