Announcements:
- Problem Set 2 due
- Preflight 3 posted; due noon next Friday

Last time:
★ *most* cosmic mass-energy today is in dark energy!?!
★ *most* cosmic matter is in dark matter!?!

Surely this has implications for particle physics

Q: *what properties must dark matter have?*

what would this mean for particle dark matter?

Q: *how about dark energy?*
The Invisible Universe and Fundamental Physics

Dark Matter—what we know

- it exists
- is dark: can’t have been detected yet
- is matter: $w_{\text{dm}} \approx 0$

If DM is relic from early universe, DM particles must be

- stable (or long-lived)
- weakly interacting
- non-relativistic today

Good news:

particle theory offers many well-motivated DM candidates fitting this description
Dark Energy—what we know

• it exists
• is dark
• is energy, i.e., $w < 0$

Major implications for fundamental physics:
need substance with $P \sim -\varepsilon$: pressure huge, negative!
 but non-relativistic matter: $0 < w \ll 1$
 relativistic matter: $w = 1/3$
→ suggests any particle gas has $0 \leq w \leq 1/3$
 Q: which means?

Bad news: particle theory taken by surprise!
 no well-motivated dark energy candidates “off the shelf”

Good news: job security for cosmologists!
Cosmic Archaeology: The Early Universe

is particle physics the key to the dark side?

When are high-energy processes/particles abundant?
• Universe has temperature now: CMB $T_0 = 2.725$ K
 ⇒ cosmic matter was once in thermal equilibrium
• in thermal bath, typical particle energy is $E \sim kT$
• cosmic temperature $T \propto 1/a = 1 + z$

Therefore:
• when primordial soup at high-E → high T → early times

★ the early universe is the realm of particle physics
★ cosmic particle history ⇔ cosmic thermal history
Cosmic Statistical Mechanics

Consider a “gas” of quantum particles (massive or massless) states “smeared out” around classical \(\vec{x} \) and \(\vec{p} \) values
define “occupation number” or “distribution function” \(f(\vec{x}, \vec{p}) \):
number of particles in each phase space “cell”:

\[
dN = g f(\vec{x}, \vec{p}) \frac{d^3\vec{x} \, d^3\vec{p}}{(2\pi\hbar)^3} = g f(\vec{x}, \vec{p}) \frac{dV_{\text{space}} \, dV_{\text{momentum}}}{(2\pi\hbar)^3} \tag{1}
\]

where \(g \) counts internal (spin/helicity) degrees of freedom and \(dx \, dp/2\pi\hbar \) counts \# of quantum states per cell

particle phase space occupation \(f \) determines bulk properties

Q: how? Hint—what’s \# particles per unit spatial volume?
for a given spatial volume element $dV_{\text{space}} = d^3\vec{x} = dx
dy\,dz$
number per unit (spatial) volume—i.e., **number density**—is

$$dn = \frac{dN}{d^3\vec{x}} g f(\vec{x}, \vec{p}) \frac{d^3\vec{p}}{(2\pi\hbar)^3}$$ \hspace{1cm} (2)

→ f gives *distribution* of momenta at each spatial point

Q: what’s f for gas of (classical) particles all at rest?
Q: f for a (classical) particle beam–directed, monoenergetic?
Q: what’s f for (classical) harmonic oscillator ensemble?

Q: given f, how to formally compute
 bulk properties n, ε, P?
Number density

\[n(\vec{x}) = \frac{d^3 N}{d^3 x} = \frac{g}{(2\pi \hbar)^3} \int d^3 \vec{p} \ f(\vec{p}, \vec{x}) \] (3)

Mass-energy density

\[\varepsilon(\vec{x}) = \rho(\vec{x}) c^2 = \langle E \rangle \ n = \frac{g}{(2\pi \hbar)^3} \int d^3 \vec{p} \ E(p) \ f(\vec{p}, \vec{x}) \] (4)

Pressure

\[P(\vec{x}) = \langle p_i v_i \rangle_{\text{direction}} n = \frac{\langle p v \rangle}{3} \ n = \frac{g}{(2\pi \hbar)^3} \int d^3 \vec{p} \ \frac{p v(p)}{3} \ f(\vec{p}, \vec{x}) \] (5)

Q: these expressions are general–simplifications in FLRW?
FRLW universe:
• homogeneous \rightarrow no \vec{x} dep
• isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p}) = f(p)$

in thermal equilibrium:
▷ Boson occupation number is Bose-Einstein dist'n
\[
f_b(p) = \frac{1}{e^{(E-\mu)/kT} - 1} \tag{6}
\]
▷ Fermion occupation number is Fermi-Dirac dist'n
\[
f_f(p) = \frac{1}{e^{(E-\mu)/kT} + 1} \tag{7}
\]

Note: μ is “chemical potential” or “Fermi energy” $\mu = \mu(T)$ but is independent of E

If $E = E_{\text{tot}}, \mu \gg T$: both $\rightarrow f = e^{-(E-\mu)/kT} \ll 1$
\rightarrow Boltzmann distribution
Chemical Potential & Number Conservation

For a particle species in thermal equilibrium

\[f(p; T, \mu) = \frac{1}{e^{(E-\mu)/kT} \pm 1} \]

What is \(\mu \), and what does it mean physically?

First, what if \(\mu = 0 \)
then \(f, n, P \) depend only on \(T \)
\(\rightarrow \) everything at same \(T \) has same \(\rho, P! \)
sometimes true! Q: examples? but not always!

but \(n \) often conserved
\(\rightarrow \) fixed by initial conditions, not \(T \)
\(\rightarrow \) if particle number conserved, \(\mu \) determined
by solving \(\n_{\text{cons}} = n(\mu, T) \rightarrow \mu(n_{\text{cons}}, T) \)
so: \(\mu \neq 0 \iff \text{particle number conservation} \)
if “chemical” equilibrium:
• rxns change particle numbers among species
• equilibrium: forward rate = reverse rate

\[a + b + \cdots \leftrightarrow A + B + \cdots \]

then

\[\sum_{\text{initial particles}} \mu_i = \sum_{\text{final particles}} \mu_f \]

(9)

sum of chemical potentials “conserved”
Radiation and Matter: The Life of a Particle Species

A given type of particle can act sometimes as cosmic matter other times as cosmic radiation

Q: criteria?

Q: radiation species today?
Q: when did this list last change? when before that?
Equilibrium Thermodynamics

Gas of mass m particles at temp T:
n, ρ, and P in general complicated
because of $E(p) = \sqrt{p^2 + m^2}$
but simplify in ultra-rel and non-rel limits
→ controlled by m vs T comparison

Non-Relativistic Species

$E(p) \simeq mc^2 + p^2/2m, \ T \ll m$
for $\mu \ll T$: Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter
energy density, number density vs T?
Non-Relativistic Species: Cosmic Matter

In the limit $E(p) \simeq mc^2 + p^2/2m$, $T \ll m$

\[
n = g \left(\frac{m k T}{2 \pi \hbar^2} \right)^{3/2} e^{-(mc^2-\mu)/kT} \tag{10}
\]

\[
\rho c^2 = mc^2 n + \frac{3}{2} kT n \simeq \varepsilon_{\text{rest mass}} = mc^2 n \tag{11}
\]

\[
P = \frac{2}{3} \varepsilon_{\text{kinetic}} = nkT \ll \rho c^2 \tag{12}
\]

Note:
- recover ideal gas law!
- $P \ll \rho c^2 \rightarrow w_{\text{non-rel}} \ll 1 \approx 0$
- if particles not conserved: $\mu = 0$
 - Q: behavior of $n(T)$? why isn't this crazy?
- if particles are conserved: $\mu(T) \neq 0$
 - this sets number density implicitly
 - i.e., $n(T, \mu) = n_{\text{cons}}$ sets values of μ
 - in cosmo setting: $n_{\text{non-rel,cons}} \propto a^{-3}$, $\rho_{\text{non-rel,cons}} \simeq mn \propto a^{-3}$
Ultra-Relativistic Species: Cosmic Radiation

Take limit $E(p) \simeq cp \gg mc^2$ (i.e., $kT \gg mc^2$)

Also take $\mu = 0$ ($\mu \ll kT$)

Note: now contributions from states with $E, \mu \ll T$

Expect bosons, fermions \rightarrow different n, ρ, P for same T

Q: why? Hint–think about form of f_b and f_f

Q: which particle type should have larger n, ρ, P at fixed T?

Energy density, number density?

Q: you know this already for bosons!
for relativistic bosons

\[n_{\text{rel,b}} = g \frac{\zeta(3)}{\pi^2} \left(\frac{kT}{\hbar c} \right)^3 \propto T^3 \]

\[\rho_{\text{rel,b}} c^2 = g \frac{\pi^2}{30} \left(\frac{kT}{\hbar c} \right)^4 \propto T^4 \]

where

\[\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \cdots = 1.20206 \ldots \] (13)

relativistic fermions:

\[n_{\text{rel,f}} = \frac{3}{4} n_{\text{rel,b}} \] (14)

\[\rho_{\text{rel,f}} = \frac{7}{8} \rho_{\text{rel,b}} \] (15)

so \(n \propto T^3 \) and \(\rho \propto T^4 \) for both

e.g., CMB today: \(n_{\gamma,0} = 411 \text{ cm}^{-3} \)

also \(n_{\text{rel,f}} < n_{\text{rel,b}} \) and \(\rho_{\text{rel,f}} < \rho_{\text{rel,b}} \) (Pauli)
For both relativistic bosons and fermions (with $\mu \ll T$):

$$P_{\text{rel}} = \frac{1}{3} \rho_{\text{rel}} c^2$$

(16)

★ holds for both fermions and bosons!

e.g., $P_{\text{rel},f} = \rho_{\text{rel},f}/3 < P_{\text{rel},b}$

★ shows that relativistic particles have $w_{\text{rel}} = +1/3$

★ $P \propto T^4$
Radiation Evolution

Cosmic radiation density sums over relativistic species:

\[
\rho_{\text{rel}} = \sum_i \rho_{\text{rel},i} \tag{17}
\]

\[
= \frac{\pi^2}{30} T^4 \left[\sum_{\text{bosons}} g_b \left(\frac{T_b}{T} \right)^4 + \sum_{\text{fermions}} \frac{7}{8} g_f \left(\frac{T_f}{T} \right)^4 \right] \tag{18}
\]

\[
= g^* \left(T \right) \frac{\pi^2}{30} T^4 \tag{19}
\]

where

- \(T \) is for some reference species, usually photons
- \(g^* \) counts “relativistic degrees of freedom”
 - e.g., photons contribute \(g^*, \gamma = 2 \)
 - left-handed \(\nu \bar{\nu} \) contributes \(g^*, \nu = 2 \cdot \frac{7}{8} = \frac{7}{4} \)
Particle Census and the Radiation Era

In radiation-dominated early universe:

\[
\left(\frac{\dot{a}}{a} \right)^2 \approx \frac{8\pi G \rho_{\text{rel}}}{3} \propto g^* (T') T^4
\] (20)

- early expansion history depends on number, types of relativistic particles
- microphysics (particle content) of the Universe controls macroscopic cosmic dynamics
- ...so any measure of early expansion rate is a probe of particle physics!
 ... as we will soon see
Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn’t really need to be cubic)
contain “gas” of N particles: can be massive or massless
particles collide with walls, bounce back elastically
particles exert force on wall \leftrightarrow wall on particles
this lead to bulk pressure

focus on one particle, and its component of motion
in one (arbitrary) axis x: speed v_x, momentum p_x

- elastic collision: $p_{x,\text{init}} = -p_{x,\text{fin}} \rightarrow \delta p_x = 2p_x$
- collision time interval for same wall: $\delta t_x = v_x/2L$
- single-particle momentum transfer (force) per wall:
 $$F_x = \frac{\delta p_x}{\delta t_x} = \frac{p_x v_x}{L}$$
- single-particle force per wall area:
 $$P = \frac{F_x}{L^2} = \frac{p_x v_x}{L^3} = \frac{p_x v_x}{V}$$

Q: total pressure?
total pressure is sum over all particles:

\[P = \sum_{\text{particles } \ell=1}^{N} \frac{p_x^{(\ell)} v_x^{(\ell)}}{V} \] \hspace{1cm} (21)

can rewrite in terms of an average momentum flux

\[P = \frac{N}{V} \sum_{\ell=1}^{N} \frac{p_x^{(\ell)} v_x^{(\ell)}}{N} = \langle p_x v_x \rangle n \] \hspace{1cm} (22)

where \(n = N/V \) is number density
\(\langle p_x \rangle n \) would be average momentum density along \(x \)
and \(\langle p_x v_x \rangle n \) is average momentum flux along \(x \)

if particle gas has isotropic momenta, then

\[\langle p_x v_x \rangle = \langle p_y v_y \rangle = \langle p_z v_x \rangle = \frac{1}{3} \langle \vec{p} \cdot \vec{v} \rangle = \frac{1}{3} \langle pv \rangle \] \hspace{1cm} (23)

so

\[P = \frac{1}{3} \langle pv \rangle n \]
Temperature Evolution Revisited

If in therm eq, maintain photon occ. #

\[f(p) = \frac{1}{e^{p/T} - 1} \]

(24)

but \(cp = h\nu = \frac{hc}{\lambda} \propto 1/a(t) \):

\[\Rightarrow p = \frac{p_0}{a} \]

w/o interactions, const # \(\gamma \) per mode \(p \)

\[\Rightarrow f(p) = const \]

\[\Rightarrow p(t)/T(t) = p_0/T_0 \]

\[\Rightarrow \frac{T}{T_0} = \frac{p}{p_0} = \frac{1}{a} = 1 + z \]

e.g., at \(z = 3 \), CMB \(T = 4T_0 \approx 11 \) K

(measured in QSO absorption line system!)

recall: used \(w = 1/3 \) to show \(\rho_\gamma \propto a^{-4} \)

but blackbody \(\rho_\gamma \propto T^4 \)
together \(T \propto 1/a \) (OK!)

22