Astro 596/496 NPA Lecture 15 Sept. 28, 2009

Announcements:

• Preflight 3 due noon Friday

Last time: cosmic thermal history

Today: begin journey to early universe strategy: go from known microphysics \rightarrow unknown i.e., "run movie backwards" from epochs at lower $z, T \rightarrow$ higher z, T

Firs stop: the Nuclear Age

 \vdash

BIG BANG NUCLEOSYNTHESIS

Gateway to the Early Universe

Big Bang Nucleosynthesis: Introduction

(K-KZ Ch. 4; Kolb & Turner Ch. 4; Olive, Steigman & Walker astro-ph)

Big Bang Nucleosynthesis = BBN = Primordial nucleosynthesis

Basic idea:

```
follow weak, nuke reactions in expanding universe initially: nuclei "ionized" to n, p only when T low enough: n, p \rightarrow "ground state"
```

To get in mood:

- What is appropriate T(E) scale for nuclear "recombination"?
- What particles alive? decayed?
- At this T, what is non-rel, rel?
- U. expansion is dominated by?
 - What is role of dark matter, dark energy?

nuclear "recombination" when $T \sim$ nuke binding $\sim 1 \text{ MeV}$

BBN epoch: for $T \sim 1 \text{ MeV} \sim 10^{10} \text{ K}$

- scale factor $a \sim 10^{-10}$
- redshift $z \sim 10^{10} \gg z_{eq} \sim 10^4$: much before matter/rad eq \Rightarrow universe is deep in *radiation-dominated era* www: cosmic epochs

since $T \gtrsim 1$ MeV > m_e , pairs e^{\pm} abundant & relativistic!

- "radiation" species: $\gamma, e^{\pm}, \nu \bar{\nu}$
- "matter" species: $m_n, m_p \gg T$: neutrons, protons non-relativistic
- dark matter, dark energy presumably present but we assume non-interacting, and unimportant but maybe not! can see what happens if so, and probe DM/DE!
- While nuclei "ionized," is n or p more abundant?
 - When "recombine," what is "ground state"?

when only n, p: expect roughly similar abundances but: since $m_n > m_p$, higher "cost" for neutrons \rightarrow should have n/p < 1: neutrons less abundant

when T low enough, $n,p \rightarrow \text{``ground state'':}$ set by maximum available binding energy

- globally, max B/A for ⁵⁶Fe, but not enough time to reach this state
- locally, max B/A at ⁴He
 - \rightarrow highest binding energy of light nuclei

so when light nuclei form, products are:

- ${}^{4}\text{He}=2p2n$: limited by the available n
- H: leftover ''unpartnered'' p but incomplete nuke ''burning'' leaves
- traces of D, ³He, ⁷Li

СЛ

key controlling parameter: baryon-to-photon ratio $n_B/n_\gamma \equiv \eta$ Q: individually, do n_B and n_γ depend on T? How? photons: $n_{\gamma} \propto T^3$ (relativistic thermal distribution) baryons: $n_B \propto a^{-3} \propto T^3$ (baryon # conservation) \Rightarrow baryon-to-photon ratio $\eta = n_B/n_{\gamma} = const$ same today as at end of BBN!

Predicted primordial abundances depend on η \rightarrow can use observations to *measure* baryon/photon ratio i.e., can us BBN to *find* η as *output* but preview: will find $\eta \sim 10^{-9}$ $\rightarrow > 10^{9}$ thermal (CMB) photons per cosmic baryon

BBN: Pioneering Days

Gamow group: (Gamow, Alpher, Herman; 1940's) Initial conditions: early U \rightarrow high density \rightarrow all neutrons (like neutron star) $\alpha\beta\gamma$ paper

Hayashi (1950):

weak interactions non-negligible weak equilibrium deutermines n/p ratio

```
Alpher, Follin, & Herman (1953):
first "modern" calculation of n/p ratio
```

Burbidge, Burbidge, Fowler & Hoyle (≡ B²FH, 1957): heavy elements made in stars (not BB) outlined nuclear processes light elements: unknown "X-process"

BBN Initial Conditions: Radiation Domination

Neutrino densities: for sure $m_{\nu} \lesssim 1 \text{eV} \ll T$ assume $\mu_{\nu} \ll T \rightarrow \text{absolute } n_{\nu}, \rho_{\nu}, P_{\nu}$ set by $T_{\nu} \rightarrow \text{each } \nu$ species i has $n_{\nu_i} = n_{\overline{\nu}_i}$ and

$$n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{1}$$

total relativistic energy density:

$$\rho_{\rm rel} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu}\rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4 \tag{2}$$

where g_* counts "effective # of relativistic degrees of freedom" at $T \gtrsim 1$ MeV, $g_* = 43/4 = 10.75$, and Friedmann:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{3}$$

Q: simple way to see $t \sim 1/T^2$ scaling is right?

now focus on baryons Q: what sets n_B ? n/p?

BBN Initial Conditions: The Baryons

Cosmic baryon density n_B , and thus $\eta = n_B/n_\gamma$ not changed by reactions with $T \lesssim E_{\text{Fermilab}} \sim 1 \text{ TeV} = 10^6 \text{ MeV}$ i.e., baryon non-conservation not observed to date $p n_B$ set somehow in early universe ("cosmic baryogenesis") $p \text{ don't } a \text{ priori know } n_B$, treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV Q: what kind of interaction needed to change $n \leftrightarrow p$? Q: what happens to n, p if such reactions are "fast"? Q: what sets the scale for "fast"? for $n \leftrightarrow p$ interchange nucleon (quark) type must change \Rightarrow only happens in weak interactions

weak int fast:

 $n \leftrightarrow p$ interconversion, e.g.

$$n + \nu_e \leftrightarrow p + e^-$$
 (4)

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
 (5)

"Fast": rates per particle $\Gamma = n\sigma v \gg H$ or, mean life against rxn $\tau = \Gamma^{-1} \ll H^{-1} \sim t$

Note: since weak interactions fast, EM rxns also fast: $\stackrel{i}{\circ} \Rightarrow$ all particles thermal, w/ same T