Astro 596/496 NPALecture ¹⁶ Sept. 30, ²⁰⁰⁹

Announcements:

• Preflight ³ due noon Friday

Last time: began big bang nucleosynthesis

Q: what are we trying to find out?

- Q: how will the results be expressed?
- Q: what are initial conditions, cosmic context?
- Q: what are simplest realistic assumptions needed?

 $\overline{}$

Standard Big Bang Nucleosynthesis

Simplest Realistic BBN Theory: "Standard" BBN

 \star gravity = General Relativity \rightarrow FLRW universe

- \star microphysics $=$ Standard Model of Particle Physics particle content, couplings as measured in lab ordinary EM, weak, nuclear interactions
- \star neutrinos: $N_{\nu} = 3$ species with usual left-handed couplings and no net neutrino number (chem. potential $\mu_\nu/T \ll 1)$

Cosmic Context and Initial Conditions

radiation dominated: $\gamma, \nu\bar\nu$ relativistic, also e^\pm for $T\gtrsim m_e$ baryons: initially free nucleons n, p

Initially (T \gtrsim $\gtrsim 1$ MeV): weak reactions fast:
intersenversien drive $n\leftrightarrow p$ interconversion

$$
n + \nu_e \leftrightarrow p + e^- \tag{1}
$$

$$
p + \bar{\nu}_e \leftrightarrow n + e^+ \tag{2}
$$

"Fast": rates per particle $\Gamma = n \sigma v \gg H$ Fast: rates per particle $\mathbf{I} = n\sigma v \gg H$
or, mean life against rxn $\tau = \Gamma^{-1} \ll H^{-1} \sim t$

Note: since weak interactions fast, EM rxns also fast: $\omega \Rightarrow$ all particles thermal, w/ same T

while weak interaction is fast, i.e., in equilibrium n/p ratio is "thermal"

think of as 2-state system: the "nucleon,"

- nucleon "ground state" is the proton: $E_1=m_pc^2$
- Γ \sim ∞ • nucleon "excited state" is the neutron: $E_2=m_nc^2$ when in equilibrium, Boltzmann sez:

$$
\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p}e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T} \tag{3}
$$

with $\Delta m=m_n-m_p$ $_{p} = 1.293318 \pm 0.000009$ MeV

at $T\gg\Delta m\text{: }n/p\simeq 1$ ___ at $T\ll\Delta m$: $n/p\simeq0$

 \rightarrow

Weak $n \leftrightarrow p$ Rates

example: want rate $\mathsf{\Gamma}_n$ per n of $\nu + n{\rightarrow}e^- + p$ as func. of ^T

Generally,

$$
\Gamma_n = n_\nu \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle \tag{4}
$$

since $v_\nu \simeq c$ and $n_\nu \sim T^3$

can show: cross section $\boxed{\sigma \sim \sigma_0 (E_e/m_e)^2 \propto E^2}$ where $\sigma_0 \sim 10^{-44}$ cm² very small! so thermal avg: $\langle \sigma \rangle \sim \sigma_0 (T / m_e)^2$

^o for experts:
$$
\sigma \sim G_F^2 T^2 \sim \alpha_{\text{weak}} T^2 / M_W^4
$$

so $\Gamma_{\text{weak}} \sim \alpha_{\text{weak}} T^5 / M_W^4$

Weak Freezeout

when *in equilibrium*, U completely described by T $+$ conserved quantum $\#$ s (chem potentials μ)

But: U would be *boring* if always in equilibrium

Happily, U out of eq. sometimes → **"freeze-out"**
→ freeze outs are most interesting times in cosm ⇒ freeze-outs are most interesting times in cosmology
PRN CMR DM baryon excess: all stem from freezee BBN, CMB, DM, baryon excess: all stem from freezeouts

for BBN: $n \leftrightarrow p$ equilibrium only holds
when woak reactions can maintain it when weak reactions can maintain it

Q: What would cause equilibrium to fail?Q: How would you quantify when eq fails? σ

Cosmic Freezeouts

Rule of thumb: ^a reaction is

(1) in equilibrium when conversion rate per nucleon Γ $\gg H$ Hub. rate
i.e. mean lifetime \ll expansion time i.e., mean lifetime \ll expansion time
or, mean free path \ll berizen size ... or, mean free path ≪ horizon size $\sim ct \sim cH^{-1}$

```
(2) "frozen out" when Γ \ll H
```
Suggests rough criterion from "freezeout"

 \bullet when $\Gamma = H$

i.e., T_{f} set by: $H(T_f) = \mathsf{\Gamma}(T_f)$

 $\overline{}$

we'll show this in more detail later...

Weak Freezeout Temperature

Weak interactions freeze when $H=\mathsf{\Gamma}_{\mathsf{weak}}$, i.e.,

$$
\sqrt{G_{\rm N}}T^2 \sim \sigma_0 m_e^{-2} T^5 \tag{5}
$$
\n
$$
\Rightarrow T_{\text{weak freeze}} \sim \frac{(G_{\rm N})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim \frac{1 \text{ MeV}}{1 \text{ MeV}} \tag{6}
$$

gravity & weak interactions conspire to give $T_{\mathsf{f}}\sim m_e\sim B_{\mathsf{nuke}}!$

for experts: note that G_{N} $_{\mathsf{N}} = 1/M_{\mathsf{P}}^2$ Planck, SO

$$
\frac{T^2}{M_{\text{Pl}}} \sim \alpha_{\text{weak}} \frac{T^5}{M_W^2}
$$
\n
$$
\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}
$$
\n(8)

freeze at nuclear scale, but by accident!

 ∞

 Q : what happens to n,p then? what else is going on?

Interlude: Pair Annihilation

right after weak freezeout, T_γ drops below m_e pairs become nonrelativistic, annihilate: $e^+e^-\!\!\rightarrow\!\!\gamma\gamma$ $_e$ = 0.511 MeV

- mass energy \rightarrow back to radiation
• small leftover amount of e^-
- small leftover amount of e^-
- \star a sort of "heating" but really just restores relativistic energy T_{γ} never rises, but cooling is briefly slowed
- \star since ν s decoupled, don't receive pair energy cooler than photons thereafter can show: $T_{\nu}=(4/11)^{1/2}$ today, the (relativistic) cosmic neutrino backgrounds hav e $1/$ 3 ${}^5T_\gamma = 0.714 T_\gamma$ $T_{\nu,0}=$ 0.714 $T_{\gamma,0}=$ 1.95 K

***** if you can think of how to detect this *cosmic v background* let me know and we'll publish–you can even be second author! \circ

The Short but Interesting Life of ^a Neutron

(1) at
$$
T > T_f
$$
, $t \sim 1$ s
\n $n \leftrightarrow p$ rapid
\nmaintain $n/p = e^{-\Delta m/T}$

(2) at
$$
T = T_f
$$
,
\nfix $n/p = e^{-\Delta m/T_f} \approx 1/6$
\nso *n* "mass fraction" is
\n
$$
X_n = \frac{\rho_n}{\rho_B} = \frac{m_n n}{m_n n + m_p p} \approx \frac{n}{n + p} \approx 1/7
$$
\n(9)

(3) until nuclei form, free *n* decay: $\dot{n} = -n/\tau_n$, with $\tau_n = 885.7 \pm 0.8$ s then mass fraction drops as

$$
X_n = X_{n,i}e^{-\Delta t/\tau} \tag{10}
$$

Q: why take this simple from?

10

Deuterium Bottleneck

Build complex nuclei from n, p
first step: deuterium productio first step: *deuterium production* $n+p{\rightarrow}d+\gamma$ www: BBN reaction network energy release $Q=B(d)=E_{\gamma}=$ 2.22 MeV: exothermic

reverse "photodissociation" $d+\gamma{\rightarrow}n+p$ allowed but *endo*thermic

Naïvely: at $T < T_f < Q$, too cold to photo-dis But: n_γ/n_B $_B = 1/\eta \sim 10^9$ $^{\mathsf{y}} \gg 1$ ⇒ many photons per baryon
→ $\langle F \rangle$ < 0 but many phote \Rightarrow $\langle E_\gamma \rangle < Q$, but many photons have $E_\gamma > Q$ D can't survive until $T\ll Q!$ c.f. delay in recombination–same idea

Q: How low to go?

 $\overline{1}$

Nuclear Statistical Equilibrium

For ^a NR species (Maxwell-Boltzmann):

$$
n = \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} e^{-(m-\mu)/T}
$$
 (11)

For $n(p,\gamma)d$ in chem eq: $\mu_n+\mu_p=\mu_d,$ (since $\mu_\gamma=0$), so

$$
\frac{n_{n}n_{p}}{n_{d}} = \left(\frac{(m_{n}m_{p}/m_{d})kT}{2\pi\hbar^{2}}\right)^{3/2}e^{-(m_{n}+m_{p}-m_{d})/T}
$$
\n
$$
= \left(\frac{m_{u}kT/2}{2\pi\hbar^{2}}\right)^{3/2}e^{-B_{D}/T}
$$
\n(12)

example of "nuclear statistical equilibrium" this example: Saha equation

Use mole fraction $Y_i = n_i/n_B$ and $n_B = \eta n_\gamma$

$$
Y_d \sim Y_n Y_p \eta (T/m_u)^{3/2} e^{B_D/T} \tag{13}
$$

Q: what is low-T behavior?

12

When $Y_d{\rightarrow 1}$: Nuke buildup starts

$$
\ln Y_d \simeq B_D/T + \ln \eta + 3/2 \ln T/m_u \sim 0 \tag{14}
$$

so

$$
T_D \simeq \frac{B_D}{\ln \eta^{-1}} \sim 0.07 \text{ MeV}
$$
 (15)

i.e., nuke rxns begin at $\boxed{T \simeq 10^9$ K Note: $T_D \ll B_2$ since $\eta \ll 1$

time t_d ∼ 200 s \rightarrow "the first 3 min"

between freezeout and T_D : free n decay: $X_n = X_{n,i}e^{-\Delta t/\tau} \simeq 0.12$

www: nuke network Q: where is flow direction? why? $\overline{13}$

Nuke reaction flow \rightarrow highest binding energy \rightarrow 4 He

almost all $n\rightarrow$ ⁴He: $n(^{4}$ He)_{after} = 1/2 $n(n)$ _{before} $Y_p = X(^4 \text{He}) \simeq 2(X_n)_{\text{before}} \simeq 0.24$ (16) \Rightarrow ~ 1/4 of baryons into ⁴He, 3/4 p→H result weakly (log) dependent on η Robust prediction: large universal ⁴He abundance

But nuke rxns also freeze out \Rightarrow n→⁴He conversion incomplete
Jeftover traces of incomplete bur leftover traces of incomplete burning:

- \bullet D
- •• 3 He (and 3 H $\rightarrow {}^{3}$ He)
- • \bullet ⁷Li (and ⁷Be \rightarrow ⁷Li)
- $\frac{1}{4}$ trace abundances ↔ nuke freeze T

→ strong n = $\frac{1}{4}$ dependence
	- \Rightarrow strong $n_B \propto \eta$ dependence

BBN theory: main result

- light element abundance predictions
- depend on baryon density $\leftrightarrow \eta \leftrightarrow \Omega_{\text{baryon}}$

"Schramm Plot' '

 $\frac{1}{\pi}$

Lite Elt Abundances vs η summarizes BBN theory predictions www: Schramm ^plot

Note: no $A > 7...$ Q: why not?

Why don't we go all the way to ⁵⁶Fe? after all: most tightly bound ⇒ most favored by nuke stat equil