Astro 596/496 NPA Lecture 17 Oct. 2, 2009

Announcements:

- Preflight 3 due
- Problem Set 3 out, due next Friday

PF3: what happens in a Universe where $m_p - m_n = 1.29$ MeV?

Last time: finished BBN theory *Q: what are the main results? how are these usually presented?*

 \vdash

BBN theory: main result

- light element abundance predictions
- depend on baryon density $\leftrightarrow \eta \leftrightarrow \Omega_{\text{baryon}}$

"Schramm Plot' '

Lite Elt Abundances vs η summarizes BBN theory predictions www: Schramm plot

Note: no A > 7... Q: why not?

Why don't we go all the way to 56 Fe? after all: most tightly bound $_{N} \Rightarrow$ most favored by nuke stat equil

Why no elements A > 7?

1. mass gaps at A = 5,8

Fermi, Turkevich ~ 1950

2. Coulomb barrier

need 3-body rxns (e.g., $3\alpha \rightarrow {}^{12}C$) to jump gaps but ρ , T too low

will see: Stars *do* jump this gap, but only because have higher density a long time compared to BBN

ω

BBN History: The Standard Model Emerges

Peebles (1966):

numerical calculation of light elements

Wagoner, Fowler, & Hoyle (1967):

numerical calculation of light elements extensive nuclear network, detailed thermodynamics basic results & code (Wagoner 1973) same as today

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this a problem? Why not?

Solar system has metals not predicted by BBN Is this a problem? Why not?

 $_{\mbox{\tiny or}}$ So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t\sim 3$ min, $z\sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim 1\,$ Gyr, $z\lesssim few$ stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

 $_{\circ}$ Q: How can we minimize (and measure) pollution level?

stars not only alter light elements
 but also make heavy element = "metals"
 stellar cycling: metals ↔ time

Solution: \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Helium-4

He atoms: high ionization potential \Rightarrow need hot H II region

hot, low metals \rightarrow "extragalactic H II region" metal-poor, dwarf irregular galaxies www: I Zwicky 18

measure He lines in nebular spectra
Q: what kind of spectrum expected?
www: He lines in I Zw 18

data show: Y and Z correlated What correlation do you expect?

 ∞

Transp: *Y* vs *Z Q: significance of features?*

Helium-4 Data: Trends and Implications

Data best fit by

Q

$$Y = Y(Z) \simeq \frac{Y_0}{\Delta Z} + \frac{\Delta Y}{\Delta Z} Z$$
 (1)

slope $\Delta Y/\Delta Z$: stellar nuke ("helium output per metal") intercept $Y_0 = Y_p$: cosmology (primordial He!)

current world average (Olive & Skillman 2005):

$$Y_p = 0.249 \pm 0.009 \tag{2}$$

error budget is key, dominated by systematic effects

 \Rightarrow uncertain models of H II regions

 \Rightarrow line strength \leftrightarrow abun. conversion

Note: use data itself to get Y - Z evolution "model-indep"

Deuterium

Two methods: (1) use D/H_{\odot} , model D - Z evolution: model dependent X (old school) (2) measure D/H at high z YES "quasar absorption line systems"

QSO: for our purposes

high-z continuum source (lightbulb)

www: QSO spectrum

consider cloud, mostly H

• at $z < z_{qso}$, but still high z

e.g., $z_{qso} = 3.4, z_{cloud} = 3$

- H absorbs γ if energy tuned to levels lowest: $n = 1 \rightarrow 2$, Ly α
- but $Ly\alpha$ in QSO frame redshifted in cloud frame

What happens?

What about a cloud at yet lower z?

intervening material seen via absorption H: "Lyman- α forest"

Deuterium in High-*z* **Absorption Systems**

D energy levels \neq H: for Hydrogen-like atoms

$$E_n = -\frac{1}{n^2} \frac{1}{2} \alpha^2 \mu c^2$$
 (3)

where $\mu = \text{reduced mass} = m_e m_A / (m_e + m_A) \simeq m_e (1 - m_e / A m_p)$ $\Rightarrow \Delta E = E_{n,D} - E_{n,H} \approx +1/2 \ m_e / m_p \ E_{n,H}$ $\Rightarrow \Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e / m_p$ $c \Delta z_D = -82 \text{ km/s (blueward)} \rightarrow \text{look for "thumbprint"}$ www: O'Meara D spectrum

What about stellar processing?

- ★ stars *destroy* D *before* H-burning! (pre-MS)
- * nonstellar astrophysical (Galactic) sources negligible Epstein, Lattimer & Schramm 1977; updated in Prodanović & BDF 03)
- \Rightarrow BBN is only important D nucleosynthesis source
- $\rightarrow D(t)$ only decreases
- 5 chem evol models: versus Z metallicity: $D \sim e^{-Z/Z_{\odot}}D_p$ Quasar absorbers: $Z \sim 10^{-2}Z_{\odot} \rightarrow \text{expect } D_{\text{QSOALS}} \approx D_p$

Deuterium Results

For the 5 best systems (clean D, well-determined H)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.78 \pm 0.29) \times 10^{-5} \tag{4}$$

For the top 2 (multiple transitions)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.49 \pm 0.18) \times 10^{-5} \tag{5}$$

significant scatter in high-z D/H:

unknown systematics?

Sloan Survey \rightarrow many QSO's \rightarrow tighter D/H

 $\stackrel{\text{to}}{\omega}$ very promising cosmological probe!