Astro 596/496 NPA Lecture 19 Oct. 7, 2009

Announcements:

- Problem Set 3 due next time
- PS 1 returned
- Fermilab Tour www: Fermitour info this Saturday, Oct 10, 8am to ~ 7pm

Last time: BBN theory vs observations

- each element: abundance changes with η \Rightarrow observation Y_{obs} picks η multiple abundances: tests consistency
- Results www: Schramm plot ⁴He gives broad η range D and ⁷Li each agree with ⁴He but not each other
- though concordant within factor \sim 2 of η
- Need "baryon tiebreaker" Q: namely

⊢

Problem Set 3: Hints

Units

usually I use (and encourage you to use) T in energy units, i.e., $T \rightarrow kT$, so that effectively $k_B = 1$ also often write m in energy units, so $m \rightarrow mc^2$, and c = 1

Chemical Potential (see cosmic thermodynamics notes)

- thermodynamic encoding of *particle number conservation* when appropriate (e.g., baryon number conservation)
- without chem potential, $\rho = \rho(T)$ \rightarrow a gas must have unique density at a given T!? which would mean it is impossible to compress air at a fixed T!
- in finding and using $\mu(T)$, useful to define "quantum concentration" $n_Q = g(mT/2\pi\hbar)^{3/2}$; the $n_{\text{nonrel}} = n_Q e^{-(m-\mu)/T}$

Relativistic Bosons vs Fermions

boson integral $\rho_{\rm b} = g/(2\pi\hbar)^3 \int d^3p E(p) f_{\rm b}(p) = 4\pi g/(2\pi\hbar)^3 \int_0^\infty dp \, cp^3 f_{\rm b}(p)$ to show: fermions have $\rho_{\rm f} = 7/8 \rho_{\rm b}$ \rightarrow need only show that fermion integral with $f_{\rm f}(p)$

 \rightarrow need only show that refinion integral with $f_f(p)$ can be massaged into 7/8× (boson integral)

Cosmic Entropy

^N note that, e.g., energy density is $\varepsilon = \varepsilon(T) = (\partial E/\partial_V)_T$ so that in 2nd law of thermo, $E = E(T, V) = \varepsilon V$ for some volume Vsimilarly S = sV, N = nV

BBN in Light of the CMB

CMB temperature fluctuation pattern encodes
a wealth of cosmic parameters ... including baryon density
⇒ new, independent, high-precision cosmic "baryometer"

WMAP (Spergel et al 2003, 2006; Komatsu et al 2008!): $\Omega_{\text{baryon,CMB}} = 0.0462 \pm 0.0015$ $\Rightarrow \eta_{\text{CMB}} = (6.21 \pm 0.16) \times 10^{-10}$

- 2.6% precision!
- independent of BBN!

BBN vs CMB: Testing Cosmology

cosmic "pillar" vs cosmic pillar!

^ω www: Schramm plot: $η_{BBN}$ vs $η_{CMB}$ Concordance!

Battle of the Baryons

In more detail:

- 1. use η_{CMB} as input to (Std) BBN theory,
- 2. compute light elements
- 3. compare with observations
- www: abundance likelihoods (CFO)
- D agreement perfect! ⁴He agreement excellent
- ⁷Li tension clearer: "tie" broken— hot research topic
- "ithium problem" could point to new physics!

BBN Quantitative Results and Implications

Theory-Observation comparison *qualitatively*: tests concordance, and hot big bang if concordance found, then *quantitatively*: measures cosmic baryon-to-photon ratio *Q*: what baryons do, don't count? photons?

What's in a Number?

given η and, say, $T_0 \rightarrow n_{\gamma,0}$ Q: what else can we calculate? Q: to what should these results be compared? Q: implications of comparison

С

A Cosmic Baryon Census

From $\eta = n_B/n_\gamma$, and CMB $T_0 \rightarrow n_\gamma, 0$, compute

• baryon number density

 $n_{B,0} = \eta n_{\gamma,0} \sim 2.4 \times 10^{-7}$ baryons cm⁻³ ~ 1 baryon/cubic meter

- baryon mass density $\rho_{B,0} \approx m_p n_{B,0}$
- baryon density parameter $\Omega_B = \rho_B / \rho_{\rm crit}$

$0.024 \leq \Omega_B \leq 0.049$

begs for comparison with

σ

- other density parameters
- results of direct searches for baryonic matter

Subcritical Baryons and Two Kinds of Dark Matter $0.024 \le \Omega_B \le 0.049$

baryons do not close the universe!

 $\Omega_B \ll \Omega_{Matter} \simeq 0.3$

most of cosmic matter is not made of baryons!

"non-baryonic dark matter"

huge implications for particle physics-more on this to come

Measure known baryons which are directly observable optically

i.e., in *luminous* form (stars, gas): $\rho_{\text{lum}} = (M/L)_{\star} \mathcal{L}_{\text{vis}}$ $\Omega_{\text{lum}} \simeq 0.0024 h^{-1} \sim 0.004 \ll \Omega_{\text{B}}$

→ most baryons dark! "baryonic dark matter" Q: Where are they?

Where are the dark baryons?

• compact objects (white dwarfs, neutron stars, black holes) search for *MACHOs*: MAssive COmpact Halo Objects via gravitational microlensing www: lensing diagram, MACHO event see lensing events towards LMC! but are they MACHOs or LMC stars? ...probably the latter

• warm/hot intergalactic medium (WHIM) structure formation \rightarrow infall \rightarrow shock heat to $T \sim 10^5 - 10^7$ K note: in galaxy clusters, most baryons in hot "intracluster" gas, not galaxies! www: X-ray cluster but X-rays from WHIM gas harder to see... recent evidence of diffuse "X-ray forest" (PF5) www: Chandra spectra

What's up with ⁷Li?

- observational systematics (e.g., stellar parameters)? Quite possible. (Melendez & Ramirez 2004; FOV05)
- astrophysical systematics (e.g., depletion)? but what about $^{6}\text{Li}?$ and Li dispersion small (\lesssim 0.2 dex)...
- BBN calculation systematics: nuke reaction rates? But wellmeasured, and can use solar neutrinos to test dominant source: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ (CFO04)
- new physics? if so, nature kind-didn't notice till now otherwise, would not have believed hot big bang...

Q

BBN + CMB: Probing Early U. & Astrophysics

combine BBN & precision CMB η removes main parameter two ways to play the game

1. Standard BBN: η is only parameter η_{CMB} +BBN theory \rightarrow primordial abundances fixed compare to observations \rightarrow constrain post-BBN nuke e.g.: local ISM has $D_{ISM}/D_p = 55^{+6}_{-4}\%$ What is the physical significance of this number?

2. Non-standard BBN: η_{CMB} fixed,

all elements probe new physics

- 5 e.g., now D probes $N_{\nu, eff}$...
 - \rightarrow BBN a stronger, more robust probe of early U.

Director's Cut Extras

Neutrino Counting with BBN: In Detail

Recall: $H = 1/2t \sim \sqrt{g_*}T^2$

Before weak freeze, rel. degrees of freedom:

$$g_* = 2 + \frac{7}{8} (2 \times 2 + 2 \times N_{\nu})$$
 (1)

$$\gamma \qquad e^{\pm} \qquad \nu \overline{\nu} \tag{2}$$

$$= \frac{22}{4} + \frac{7}{4}N_{\nu} = 10.75 \text{ for } N_{\nu} = 3 \tag{3}$$

fix η , but let $N_{\nu} = 3 + \Delta N_{\nu}$ if $\Delta N_{\nu} > 0$, then $\delta g_* = 7/4 \Delta N_{\nu}$ \rightarrow higher H at fixed T

Estimate δY_p

(1) Weak freeze:

$$H(T_f) = \Gamma_{np}(T_f)$$

 $T_f \propto g_*^{1/6}$
 $\delta T_f/T_f = 1/6 \ \delta g_*/g_*$
freeze at higher T

$$\frac{\delta X_{n,f}}{X_{n,f}} = \frac{\delta (n/p)_f}{(n/p)_f} = \frac{1}{6} \frac{m_n - m_p}{T_f} \frac{\delta g_*}{g_*}$$
(4)

(2) D bottleneck:
$$T_d \simeq B_2 / \ln \eta^{-1}$$
,
 $t_d \propto g_*^{-1/2} T_d^{-2}$
 $\delta t_d / t_d = -1/2 \delta g_* / g_*$
nuke buildup sooner \rightarrow less free n decay

(3) Element production Recall: at t_d , $X_n = X_{n,f}e^{-t_d/\tau_n}$ and $Y_p = 2X_n$, so

$$\frac{\delta Y_p}{Y_p} = \frac{\delta X_{n,f}}{X_{n,f}} - \frac{t_d}{\tau_n} \frac{\delta t_d}{t_d}$$
(5)

hotter freeze less decay (6)

$$= \left(\frac{1}{6} \frac{m_n - m_p}{T_f} + \frac{1}{2} \frac{t_d}{\tau_n}\right) \frac{\delta g_*}{g_*}$$
(7)
$$\simeq 0.07 \ \Delta N_{\nu}$$
(8)

estimate $\delta Y_p \sim 0.016 \ \Delta N_{\nu}$ full numerics: $\delta Y_p = 0.013 \ \Delta N_{\nu}$ more $\nu \rightarrow$ more He www: Schramm plot for different N_{ν}