Astro 596/496 NPA
 Lecture 19
 Oct. 7, 2009

Announcements:

- Problem Set 3 due next time
- PS 1 returned
- Fermilab Tour www: Fermitour info this Saturday, Oct 10, 8am to $\sim 7 \mathrm{pm}$

Last time: BBN theory vs observations

- each element: abundance changes with η
\Rightarrow observation $Y_{\text {obs }}$ picks η multiple abundances: tests consistency
- Results www: Schramm plot ${ }^{4}$ He gives broad η range
D and ${ }^{7} \mathrm{Li}$ each agree with ${ }^{4} \mathrm{He}$ but not each other though concordant within factor ~ 2 of η
- Need "baryon tiebreaker" Q: namely

Problem Set 3: Hints

Units

usually I use (and encourage you to use) T in energy units,
i.e., $T \rightarrow k T$, so that effectively $k_{B}=1$ also often write m in energy units, so $m \rightarrow m c^{2}$, and $c=1$

Chemical Potential (see cosmic thermodynamics notes)

- thermodynamic encoding of particle number conservation when appropriate (e.g., baryon number conservation)
- without chem potential, $\rho=\rho(T)$
\rightarrow a gas must have unique density at a given T ? ?
which would mean it is impossible to compress air at a fixed T !
- in finding and using $\mu(T)$, useful to define
"quantum concentration" $n_{Q}=g(m T / 2 \pi \hbar)^{3 / 2}$; the $n_{\text {nonrel }}=n_{Q} e^{-(m-\mu) / T}$

Relativistic Bosons vs Fermions

boson integral $\rho_{\mathrm{b}}=g /(2 \pi \hbar)^{3} \int d^{3} p E(p) f_{\mathrm{b}}(p)=4 \pi g /(2 \pi \hbar)^{3} \int_{0}^{\infty} d p c p^{3} f_{\mathrm{b}}(p)$
to show: fermions have $\rho_{\mathrm{f}}=7 / 8 \rho_{\mathrm{b}}$
\rightarrow need only show that fermion integral with $f_{\mathrm{f}}(p)$ can be massaged into $7 / 8 \times$ (boson integral)

Cosmic Entropy

note that, e.g., energy density is $\varepsilon=\varepsilon(T)=\left(\partial E / \partial_{V}\right)_{T}$
so that in 2nd law of thermo, $E=E(T, V)=\varepsilon V$ for some volume V
similarly $S=s V, N=n V$

$B B N$ in Light of the CMB

CMB temperature fluctuation pattern encodes
a wealth of cosmic parameters ... including baryon density
\Rightarrow new, independent, high-precision cosmic "baryometer"

WMAP (Spergel et al 2003, 2006; Komatsu et al 2008!):
$\Omega_{\text {baryon }, \mathrm{CMB}}=0.0462 \pm 0.0015$
$\Rightarrow \eta_{\mathrm{CMB}}=(6.21 \pm 0.16) \times 10^{-10}$

- 2.6\% precision!
- independent of BBN!

BBN vs CMB: Testing Cosmology
cosmic "pillar" vs cosmic pillar!
${ }^{\omega}$ www: Schramm plot: η_{BBN} vs η_{CMB}
Concordance!

Battle of the Baryons

In more detail:

1. use η_{CMB} as input to (Std) BBN theory,
2. compute light elements
3. compare with observations

WWw: abundance likelihoods (CFO)

- D agreement perfect! ${ }^{4} \mathrm{He}$ agreement excellent
- ${ }^{7}$ Li tension clearer: "tie" broken- hot research topic "lithium problem" could point to new physics!

BBN Quantitative Results and Implications

Theory-Observation comparison
qualitatively: tests concordance, and hot big bang if concordance found, then
quantitatively: measures cosmic baryon-to-photon ratio
Q: what baryons do, don't count? photons?

What's in a Number?
given η and, say, $T_{0} \rightarrow n_{\gamma, 0}$
Q : what else can we calculate?
Q : to what should these results be compared?
Q: implications of comparison

A Cosmic Baryon Census

BBN \rightarrow baryon content of U.: "baryometer"
...just from lite elements
not by directly counting baryons today

From $\eta=n_{B} / n_{\gamma}$, and CMB $T_{0} \rightarrow n_{\gamma}, 0$, compute

- baryon number density
$n_{B, 0}=\eta n_{\gamma, 0} \sim 2.4 \times 10^{-7}$ baryons $\mathrm{cm}^{-3} \sim 1$ baryon/cubic meter
- baryon mass density $\rho_{B, 0} \approx m_{p} n_{B, 0}$
- baryon density parameter $\Omega_{B}=\rho_{B} / \rho_{\text {crit }}$

$$
0.024 \leq \Omega_{B} \leq 0.049
$$

begs for comparison with

- other density parameters
- results of direct searches for baryonic matter

Subcritical Baryons and Two Kinds of Dark Matter $0.024 \leq \Omega_{B} \leq 0.049$

$\Omega_{B} \ll 1$
baryons do not close the universe!
$\Omega_{\mathrm{B}} \ll \Omega_{\text {Matter }} \simeq 0.3$
most of cosmic matter is not made of baryons!
"non-baryonic dark matter"
huge implications for particle physics-more on this to come

Measure known baryons which are directly observable optically
i.e., in luminous form (stars, gas): $\rho_{\text {lum }}=(M / L)_{\star} \mathcal{L}_{\text {vis }}$
$\Omega_{\text {lum }} \simeq 0.0024 h^{-1} \sim 0.004 \ll \Omega_{\mathrm{B}}$
$\checkmark \Rightarrow$ most baryons dark! "baryonic dark matter"
Q: Where are they?

Where are the dark baryons?

- compact objects (white dwarfs, neutron stars, black holes) search for MACHOs: MAssive COmpact Halo Objects via gravitational microlensing
WWW: lensing diagram, MACHO event
see lensing events towards LMC! but are they MACHOs or LMC stars? ...probably the latter
- warm/hot intergalactic medium (WHIM)
structure formation \rightarrow infall \rightarrow shock heat to $T \sim 10^{5}-10^{7} \mathrm{~K}$ note: in galaxy clusters, most baryons in hot "intracluster" gas, not galaxies!
WWW: X-ray cluster
but X-rays from WHIM gas harder to see...
∞ recent evidence of diffuse "X-ray forest" (PF5)
www: Chandra spectra

What's up with ${ }^{7}$ Li?

- observational systematics (e.g., stellar parameters)? Quite possible. (Melendez \& Ramirez 2004; FOV05)
- astrophysical systematics (e.g., depletion)? but what about ${ }^{6}$ Li? and Li dispersion small ($\lesssim 0.2$ dex) \ldots
- BBN calculation systematics: nuke reaction rates? But wellmeasured, and can use solar neutrinos to test dominant source: ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ (CFOO4)
- new physics? if so, nature kind-didn't notice till now otherwise, would not have believed hot big bang...

BBN + CMB: Probing Early U. \& Astrophysics

combine BBN \& precision CMB η
removes main parameter
two ways to play the game

1. Standard BBN: η is only parameter
$\eta_{\text {CMB }}+$ BBN theory \rightarrow primordial abundances fixed compare to observations \rightarrow constrain post-BBN nuke e.g.: local ISM has $D_{I S M} / D_{p}=55_{-4}^{+6} \%$

What is the physical significance of this number?
2. Non-standard BBN: η_{CMB} fixed, all elements probe new physics
¿ e.g., now D probes $N_{\nu, e f f} \ldots$
$\rightarrow B B N$ a stronger, more robust probe of early U.

Director's Cut Extras

Neutrino Counting with BBN: In Detail

Recall: $H=1 / 2 t \sim \sqrt{g *} T^{2}$
Before weak freeze, rel. degrees of freedom:

$$
\begin{align*}
g_{*} & =2+\frac{7}{8}\left(2 \times 2+2 \times N_{\nu}\right) \tag{1}\\
& =\frac{\gamma 2}{4}+\frac{7}{4} N_{\nu}=10.75 \text { for } N_{\nu}=3 \tag{2}
\end{align*}
$$

fix η, but let
$N_{\nu}=3+\Delta N_{\nu}$
if $\Delta N_{\nu}>0$, then
$\delta g_{*}=7 / 4 \Delta N_{\nu}$
\rightarrow higher H at fixed T
Estimate δY_{p}
(1) Weak freeze:
$H\left(T_{f}\right)=\Gamma_{n p}\left(T_{f}\right)$
$T_{f} \propto g_{*}^{1 / 6}$
$\delta T_{f} / T_{f}=1 / 6 \delta g_{*} / g_{*}$
freeze at higher T

$$
\begin{equation*}
\frac{\delta X_{n, f}}{X_{n, f}}=\frac{\delta(n / p)_{f}}{(n / p)_{f}}=\frac{1}{6} \frac{m_{n}-m_{p}}{T_{f}} \frac{\delta g_{*}}{g_{*}} \tag{4}
\end{equation*}
$$

(2) D bottleneck: $T_{d} \simeq B_{2} / \ln \eta^{-1}$,
$t_{d} \propto g_{*}^{-1 / 2} T_{d}^{-2}$
$\delta t_{d} / t_{d}=-1 / 2 \delta g_{*} / g_{*}$ nuke buildup sooner \rightarrow less free n decay
(3) Element production

Recall: at $t_{d}, X_{n}=X_{n, f} e^{-t_{d} / \tau_{n}}$ and $Y_{p}=2 X_{n}$, so

$$
\begin{align*}
& \frac{\delta Y_{p}}{Y_{p}}= \frac{\delta X_{n, f}}{X_{n, f}}-\frac{t_{d}}{\tau_{n}} \frac{\delta t_{d}}{t_{d}} \tag{5}\\
& \text { hotter freeze less decay } \\
&=\left(\frac{1}{6} \frac{m_{n}-m_{p}}{T_{f}}+\frac{1}{2} \frac{t_{d}}{\tau_{n}}\right) \frac{\delta g_{*}}{g_{*}} \tag{7}\\
& \simeq 0.07 \Delta N_{\nu} \tag{8}
\end{align*}
$$

estimate $\delta Y_{p} \sim 0.016 \Delta N_{\nu}$
full numerics: $\delta Y_{p}=0.013 \Delta N_{\nu}$
more $\nu \rightarrow$ more He
www: Schramm plot for different N_{ν}

