Astro 596/496 NPA Lecture 20 Oct. 9, 2009

Announcements:

- Problem Set 3 due
- Preflight 4 out, due noon next Friday
- Fermilab Tour www: Fermitour info tomorrow, Oct 10, 8am to ~ 7pm

Last time: BBN concordance and implications

- CMB + BBN agreement on cosmic baryon content
- ...but lurking lithium problem
- FLRW cosmology working back to $t \sim 1$ sec, $z \sim 10^{10}$
- baryonic dark matter

 \vdash

non-baryonic dark matter

Standard BBN Assumptions? *Q: which safest? most dubious?*

Beyond the Standard Model

Standard BBN Assumes:

- gravity \equiv General Relativity
- FLRW universe (homogeneous, isotropic)
- Standard Model physics (particles, interactions, couplings)
- $N_{\nu} = 3$ non-degenerate, left-handed ν species

```
If any not true \rightarrow different nuke
```

```
Steigman, Schramm, & Gunn (1977)
What if N_{\nu} > 3?
at the time, lab limit N_{\nu} \lesssim few \times 10^3
```

Ν

BBN with Extra Relativistic Degrees of Freedom

Imagine adding extra light ($m_{\nu} \ll 1 \text{ MeV}$) neutrino species

Q: how would this affect $n \leftrightarrow p$ conversion?

Q: how would this affect the cosmic environment?

Q: does more neutrinos $\Delta N_{\nu} > 0$ mean more ⁴He or less?

Q: how to use Y_{obs} to limit ΔN_{ν} ?

If add neutrinos (other other relativistic species)

- $n \leftrightarrow p$ interconversion only due to $\nu_e, \overline{\nu}_e$
 - \rightarrow no change to microphysics with new ν species
- each species adds radiation density $\delta \rho_{rad} = g/g_{\gamma} \rho_{\gamma}$ and since $H^2 \approx 8\pi G \rho_{rad}/3$, expansion rate goes up!
- higher $H \rightarrow$ earlier freezeout \rightarrow higher $(n/p)_{f} = e^{-\Delta m/T_{f}}$ \Rightarrow more $n \Rightarrow$ more ⁴He

www: primordial abundances for different $N_{
u}$

```
If know \eta_{10} \gtrsim 3 (conservative), predict Y_p \gtrsim 0.240 for N_{\nu} = 3
```

```
observations: Y_p < 0.248 (conservative),
so \delta Y < 0.008
and thus \Delta N_{\nu} < 0.6
can't have more than 3.6 species
\rightarrow require 3 "normal" species!
if include CMB info, can do better...
```

Note: ΔN_{ν} really measures any increase in energy density due to any relativistic species in equil $\Delta N_{\nu} =$ "# effective neutrino species"

e.g., scalar ($S = 0 \rightarrow \text{boson}$), g = 1 particle: $N_{\nu,eff} = 4/7 = 0.57$ "barely alive"/ruled out

BBN constrains particle physics!

Y. Zel'dovich:

The universe is the poor man's particle accelerator.

www: David Norman Scrhamm

Future Prospects

light elements from the CMB \rightarrow can test BBN with CMB alone!

• ⁴He already possible, interesting (Huey, Cyburt, Wandelt 04) ...and agrees with $\eta_{\rm WMAP}$

• ⁷Li harder, but a possibility

stay tuned...

The Early Universe: Particle Dark Matter

Particle Dark Matter

Consider stable particle species χ (& antiparicle $\bar{\chi}$)

- nonrelativistic today: $m_{\chi} \gg T_0 \sim 3 \times 10^{-4} \text{ meV}$
- thermally produced in the early universe

What determines its abundance today? Q: if χ is still in thermal (chemical) eq? Q: and so?