Astro 596/496 NPA Lecture 22 Oct. 14, 2009

Announcements:

• Preflight 4 due noon Friday

Last time: the WIMP Miracle *Q: what's a WIMP? what's miraculous?* if a symmetric stable species ever created (annihilates but not decays)
 then annihilations will freeze, and
 inevitably have nonzero relic density today.

to make $\Omega_{\text{WIMP}} = \Omega_{\text{NBDM}}$ today needed annihilation cross section is at Weak scale! corresponding energy: if $\sigma \sim \alpha/E^2$ then $\sigma \sim 10^{-36} \text{ cm}^2 = 10 \text{ pb} \rightarrow E \sim 1 \text{ TeV}$

WIMP Candidates: Supersymmetry

No Standard Model particle is a WIMP but Particle physics offers candidates

e.g., **Supersymmetry** (SUSY):

postulates new symmetry: fundamental fermion \leftrightarrow boson link

- invented to explain conceptual puzzles of Standard Model
- other theoretical motivation and attraction (aside from DM!)

Basic SUSY hypothesis:

ω

every particle has "super-partner" w/ opposite statistics

• e.g., $s = \frac{1}{2}$ electron $\rightarrow s = 0$ scalar electron $= \frac{\text{selectron } \tilde{e}}{1}$

- s = 1 photon \rightarrow fermionic $s = \frac{1}{2}$ photonio $\tilde{\gamma}$
- half of all supersymmetric particles already discovered! ;> bold idea, but perhaps like antimatter:

symmetry \rightarrow doubling of particle inventory

The Nature of Superpartners

Superpartner fundamental interactions:
★ interactions *same* as ordinary (Standard Model) partner:
i.e., usual strong, EM, weak, gravity
and e.g., *ẽ* feels only EM, weak, gravity
★ couplings (charges) also *same* as SM partners
e.g., electric charge Q_{EM}(*ẽ*) = −1; Q_{EM}(*ṽ*) = 0

SUSY *fermionic* partners (e.g., photino) are "Majorana" i.e., particle = antiparticle $\tilde{\chi} = \overline{\tilde{\chi}}$

lowest mass spartner stable (conserved quantum # "*R*-parity") \Rightarrow there is a *"lightest supersymmetric particle"* = **LSP** identity depends on SUSY model details, but often LSP= $\tilde{\gamma}$

SUSY partner masses/annihilation: Weak scale $\sim few$ TeV

Q: implications for early universe?

Supersymmetric Cosmology

put SUSY in context of Early Universe:

at high T: normal and partner particles abundant and in equal numbers

as T drops:

- normal (Standard Model) particles $\rightarrow n, p, e, \nu$ remain
- spartners: decay → LSP
 but no LSP → Standard Model particles (*R* conservation)
 can annihilate χ χ̃ → SM, but annihilations freezeout at ~ TeV
 → remains today as dark matter!

J

Q: how to test this in the laboratory? which lab?

WIMP Searches: Accelerators

if Supersymmetry exists in nature spartners likely to be found in $\sim few$ yrs at CERN Large Hadron Collider (or maybe even Fermilab) www: CERN, LHC www: FNAL, CDF SUSY discovery would revolutionize particle physics and all but guarantee dark matter = cold relics

Even if nature is not supersymmetric many particle theories predict new physics at $\sim 1~{\rm TeV}$

Note: even if discover supersymmetry,

maybe not directly see the LSP

σ

but: if dark matter is a WIMP, other ways to find out *Q: namely?*

WIMP Searches: Direct Detection

if WIMPs are DM \rightarrow dark halo full of them local density $\rho = mn \sim 0.3 \text{ GeV cm}^{-3}$ virial velocities $v_0^2 \sim GM_{\text{halo}}/R_{\text{halo}} \sim (400 \text{ km/s})^2$ \Rightarrow WIMP flux $F_{\text{WIMP}} = nv_0$ \Rightarrow Look for WIMP-nucleus elastic scattering – challenging!

Search using sensitive detectors: cryogenic, underground interaction: *WIMP collision* \rightarrow *nuclear recoil* measure: effects of recoiling ($E_{kin} \sim 1 - 100 \text{keV}$) nucleus *Q: for example?*

WIMP-nucleus recoil signatures

▷ energy injection: recoil heats detector crystal specific heat $C = dE/dT \sim T^3$ $\Delta T = \Delta E/C \propto T^{-3}$ if supercold, can detect ΔT rise

momentum transfer: detector lattice (phonons) excited

▷ *scintillation, ionization*: charged recoil nucleus excites medium relax via γ, e emission \rightarrow detect these

that's still not all...

 $_{\infty}$ Q: astrophysical means infer WIMP existence and properties?

WIMP Searches: Indirect Detection

if WIMPs are DM \rightarrow Galactic dark halo full of them but Galactic halo density \gg cosmic mean \rightarrow annihilation rate $q \propto \langle \sigma v \rangle \rho_{\text{wimp}}^2$ can be large \rightarrow annihilation products potentially observable

Local annihilations

Q: how see if $\psi \overline{\psi} \rightarrow \gamma \gamma$ only? Q: how see if $\psi \overline{\psi} \rightarrow$ other Standard Model particles? e.g., $\psi \overline{\psi} \rightarrow e^+ e^-$ or $q \overline{q}$?

Galactic center annihilations

Q: how see if $\psi \overline{\psi} \rightarrow \gamma \gamma$ only? • Q: how see if $\psi \overline{\psi} \rightarrow$ other Standard Model particles? e.g., $\psi \overline{\psi} \rightarrow e^+ e^-$ or $q \overline{q}$?

Indirect Detection: Local Annihilation Signatures

if $\psi \overline{\psi} \rightarrow \gamma \gamma$ only: line emission $E_{\gamma} \sim m_{\psi}$ \Rightarrow local contribution to diffuse γ signature but: two-photon annihilation $\psi \overline{\psi} \rightarrow \gamma \gamma$ must be *suppressed* else χ has direct EM coupling \rightarrow electric charge \rightarrow DM not dark! but can and often do have things like $\psi \overline{\psi} \rightarrow \pi' s \rightarrow \gamma' s$

if $\psi \overline{\psi} \rightarrow q \overline{q}$: hadronize, sometimes to nucleons $N \overline{N}$ source of $\overline{n}, \overline{p}$, and $\overline{d} = [\overline{n}\overline{p}]$ \Rightarrow can look for these in cosmic rays! but "foreground": "normal" antimatter from cosmic ray propagation e.g., $p_{cr} + p_{ism} \rightarrow ppp\overline{p}$

10

if $\psi \bar{\psi} \rightarrow e^+ e^-$: local source of high-energy e^+

Positron Excess: Hints of Dark Matter?

Hot off the presses: Cosmic-ray experiments sensitive to e^+ (and e^-)

PAMELA Payload for Anitmatter Exploration and Light-nuclei Astrophysics (2009) satellite sees unexplained e^+ enrichment at $E \gtrsim 10$ GeV www: PAMELA positron fraction $e^+/(e^+ + e^-)$

ATIC Advanced Thin Ionizaton Calorimeter (2009) balloon sees excess in total $e^+ + e^-$ flux at $E \gtrsim 100$ GeV www: ATIC electron flux ATIC + PAMELA \rightarrow excess of high-energy positrons! \rightarrow can fit with dark matter models (but not minimal SUSY!)

But:

 $\frac{1}{1}$

- nearby pulsars can produce e^+ signal at observed level
- Fermi gamma-ray observatory (2009) also sensitive to $e^+ + e^$ and *does not* see ATIC excess