Astro 596/496 NPA Lecture 23 Oct. 16, 2009

Announcements:

- Preflight 4 was due today
- Problem Set 4 out, due in class next Friday

Lingering issues from Last time: Supersymmetry ***** key point: $m(\tilde{x}) > m(x)$ always-spartners heavier so $\tilde{x} \to x + j u \tilde{n} k$ if allowed by *R*-parity Why? otherwise SUSY trivially dead-no spartners found (yet!) How? *not* automatic-SUSY symmetry "breaking" required many schemes exist; least elegant SUSY aspect (in my view) ***** SUSY decays: obey normal conservation laws + *R*-parity e.g., squark $\tilde{q} \to q + \tilde{\gamma}$ check electric charge, baryon #, angular momentum

Q: WIMP detection methods?

The Particle Dark Matter Trifecta

Create in Accelerators

Tevatron/LHC creates TeV WIMP or more likely: detects new physics implying WIMPS (e.g., SUSY)

Directly Detect in Underground Experiments

see signal WIMP-nucleus scattering
note: DAMA experiment claims signal at high confidence!
www: DAMA signal
...but nobody else sees it...

Indirectly Detect Annihilation Products

- locally: see products as anomalous cosmic rays 2009: e^+ excess seen! ...but could have astrophysical origin
- at Galactic center

N

Q: why is this an interesting region?

Indirect Detection: Galactic Center Annihilation

Galactic center is ρ_{DM} peak \rightarrow annihilation goldmine!?!

Direct Photon Production

 $\star \ \psi \bar{\psi} \rightarrow \gamma \gamma \text{ line: } E_{\gamma} = m_{\psi} \text{ , and}$ $\star \ \psi \bar{\psi} \rightarrow q \bar{q} \rightarrow \pi^{0} \rightarrow \gamma \gamma \text{ continuum } E_{\gamma} < m_{\psi}$

Galactic center seen in GeV range (1990's: EGRET) with poorly understood "GeV excess"!?! But new γ -ray observatory www: Fermi launched last year, finds no GeV excess

Galactic center seen in TeV range

 $^{\omega}$ www: HESS

but point source too localized(?), energy spectrum a power-law

Synchrotron Radiation

if $\psi \overline{\psi} \rightarrow e^+ e^-$: source of high-energy e^+

- move in strong Galactic B field*:
 - accelerated (spiral path) \rightarrow synchrotron radiation emission from radio bands, possibly up to X-ray
- \rightarrow recent claim: radio & sub-mm observations currently strongest astronomical DM constraint! beat out γ s! (but less clean, no direction info)

Neutrino Production

from $\psi \bar{\psi} \rightarrow \nu \bar{\nu}$, but more from $\psi \bar{\psi} \rightarrow q \bar{q} \rightarrow \pi^{\pm} \rightarrow \nu_e \nu_\mu \bar{\nu}_\mu$ www: http://icecube.wisc.eduICECUBE use South Pole ice as target monitor with array of buried photomultipliers observe e^- Čerenkov light from elastic $\nu e \rightarrow \nu e$

4

* no relation to instructor

Supersymmetric Dark Matter: Where Do We stand?

Obviously, no clear detections thus far

Current status:

accelerator and astrophysical constraints are:

competitive: both place strong constraints

on allowed MSSM SUSY parameters $(m_0, m_{3/2}, \mu, A, \tan \beta)$

complementary: different methods strong in different parts

of parameter space

Upgrades coming soon on all fronts

- \rightarrow the race is on!
- $_{\sigma}$ \rightarrow an answer will emerge in the non-distant future!

If confirmed WIMP detection:

- DM found
- need particle physics beyond Standard Model
- ★ payoff big!

If no WIMP signature

- SUSY much less attractive
- dark matter not a cold relic → what is it? an asymmetric relic? but why asymmetrical? modified gravity? hidden in braneworld?

Baryogenesis: Origin of Matter/Antimatter Asymmetry

Observed Matter (Baryon) Asymmetry of Univ.

As far as we are able to observe, a cosmic asymmetry exists: baryons and leptons dominate over antibaryons and antileptons. www: schematic of scenarios

Q: What is evidence for different scales? Solar Sytem, solar neighborhood, MW Galaxy, galaxy clusters, Hubble volume?

 \neg

Evidence for Baryon Excess

Matter-only System	Asymmetry Evidence
Solar system	landings, solar wind, proto- \odot neb
Cosmic rays	consistent with in-flight orign, e.g., $p_{cr}p_{ism} \rightarrow ppp\overline{p}$
MW Galaxy	cosmic rays, no annihilation γ s
Galaxy clusters	no γ from galaxy-intracluster gas interface
	nor in colliding clusters
	\Rightarrow all matter or all antimatter
Hubble volume	too few 1–10 MeV γ , no CMB distortion

no evidence for animatter "domains" anywhere

strictly: if animatter domains exist segregated from matter on scales $\gtrsim 10^{14} M_\odot$ and probably $> d_H = 2~{\rm Gpc}$

Conclude: cosmi baryon asymmetry exists $Y_B = n_B/s \simeq n_B/7n_\gamma = \eta/7 \sim 10^{-10}$ at $T \gtrsim \Lambda_{\rm QCD} \simeq 200$ MeV, $q\bar{q}$ pairs abundant, $n_q \simeq n_{\bar{q}} \sim n_\gamma$, so asymm was

$$\frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{q}}} \sim \frac{n_B}{n_\gamma} \sim 6 \times 10^{-10} \tag{1}$$

for every 1,000,000,000 antiquarks there were 1,000,000,001 quarks a tiny but crucial excess!

but on theoretical grounds, expect particle creation in pairs so how did this happen?

9