Astro 596/496 NPA Lecture 24 Oct. 19, 2009

Announcements:

• Problem Set 4 due in class Friday

Last time: cosmic matter asymmetry

Q: what's the evidence for a matter (baryon) asymmetry?

Q: what quantifies the baryon/antibaryon excess?

cosmic baryon asymmetry exists $Y_B = n_B/s \simeq n_B/7n_\gamma = \eta/7 \sim 10^{-10}$ at $T \gtrsim \Lambda_{QCD} \simeq 200$ MeV, $q\bar{q}$ pairs abundant, $n_q \simeq n_{\bar{q}} \sim n_\gamma$, so asymm was

$$\frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{q}}} \sim \frac{n_B}{n_\gamma} \sim 6 \times 10^{-10} \tag{1}$$

for every 1,000,000,000 antiquarks there were 1,000,000,001 quarks a tiny but crucial excess!

but on theoretical grounds, expect particle creation in pairs so how did this happen?

A Baryon Symmetric Universe

If start baryon symmetric $(n_B = n_{\overline{B}})$ what is relic abundance? \Rightarrow apply freezeout technology

assume nucleons are a **symmetric cold relic** predict relic abundance after $N\bar{N}$ annihilation freezeout: $\langle \sigma v \rangle_{ann} \sim r_p^2 c \sim 1 \text{ fm}^2 c \sim 10^{-15} \text{ cm}^3 \text{ s}^{-1}$ $\Rightarrow T_f \sim m/40 \sim 20 \text{ MeV}$ $Y_{B,\infty} \sim (m/T_f) e^{-m/T_f} \simeq 10^{-19}$ \Rightarrow if U baryon symmetric, predict $\eta_{sym} \sim 10^{-18} \ll \eta_{obs}$

 $_{\omega}$ Universe must have been baryon **asymmetric** how did this arise?

Baryogenesis Ingredients: A. Sakharov (1967)

Assume: initially, $n_B = n_{\bar{B}}$ then Universe generated asymmetry (i.e., asymm is dynamical)

Requirements:

1. Baryon number non-conservation not yet observed: e.g., $\tau_p > 10^{33}$ yr (!) but theoretically expected (GUT theories)

but: *B* violation *necessary* but not *sufficient*

consider *B*-violating rxns $\frac{Rxn \qquad B \text{ change Rate}}{a+b\rightarrow c+d \qquad \Delta B \qquad \Gamma}$ $\overline{a}+\overline{b}\rightarrow\overline{c}+\overline{d} \qquad -\Delta B \qquad \overline{\Gamma}$ net baryon production rate: $\Gamma_{\text{net}} = \Delta B(\Gamma - \overline{\Gamma})$ *Q: which means we need what?* we need: $\Gamma_{\text{net}} = \Delta B(\Gamma - \overline{\Gamma}) > 0$

- baryon non-conservation gives $\Delta B \neq 0$
- but also need Γ > Γ
 set by particle (discrete) symmetries

Transformations

C =charge conjugation: particle \leftrightarrow antiparticle P =parity: space inversion $\vec{x} \rightarrow -\vec{x} \Rightarrow \vec{p} \rightarrow -\vec{p}$ Weak interation: P maximally violated: ν_e measured as *left-handed only*

www: Lee, Yang, Wu

 $P\nu_{\rm L} = \nu_{\rm R}$ not made via weak int but $CP\nu_{\rm L} = C\nu_{\rm R} = \bar{\nu}_{\rm R}$ OK

С

neutrino helicity sketch

if CP conserved: $CP(a + b \rightarrow c + d) = \overline{a} + \overline{b} \rightarrow \overline{c} + \overline{d}$

i.e., identical quantum probabilities, in particular (anti)baryon number production $\overline{\Gamma} = \Gamma$ generate new antibaryons as fast as baryons! aargh! \rightarrow can't have this symmetry/conservation

2. CP (and C) Violation

σ

```
1964: CP violation show for K^0, \bar{K}^0 decays

www: Fitch & Cronin Nobel prize

current precision limits: KTeV Fermilab

2001: " " " " B^0, \bar{B}^0 decays (B = \bar{b}d)

www: BaBar, Belle

www: B^0 vs \bar{B}^0 decay asymmetries: matter/antimatter difference!
```

...but still not guaranteed B excess!

3. Departure from thermal equilibrium

basic idea: in thermodynamic equilib., reaction details irrelevant

 $\mu_B = \mu_{\bar{B}} = 0$ since *B* violated, and so

$$f_b(p) = \frac{1}{e^{E_b/T} + 1} \quad f_{\bar{b}} = \frac{1}{e^{E_{\bar{b}}/T} + 1} \tag{2}$$

but $E_b(p) = \sqrt{p^2 + m_b^2} = E_{\overline{b}}(p)$ since $m_b = m_{\overline{b}}$ so therm eq. $\Rightarrow f_b = f_{\overline{b}} \Rightarrow n_b = n_{\overline{b}}$

But we know the U leaves eq. sometimes - freezeouts!

Baryogenesis models have been constructed with GUT particle theories can get $\eta \sim 10^{-10}$: encouraging! \Rightarrow need more particle physics data to test

Other unfinished business: *Fortune Cookie*

~

Early Universe: Some Highlights

Energy/Temperature T	Event
$\sim m_\mu \sim 100$ MeV	$\mu^+\mu^-$ abundant
$\sim m_\pi \sim$ 140 MeV	π abundant
$\sim \Lambda_{ m QCD} \sim 200$ MeV	quark-hadron transition: baryons + mesons
	\leftrightarrow "plasma" of unbound quarks $+$ gluons
$\sim few imes M_W, M_Z \sim$ 300 GeV	Electroweak transition: EM + weak forces unified
$\sim 10^{15}$ GeV (?)	Grand Unified Theory (GUT) transition:
	strong + electroweak forces unified
	Inflation (accelerated expansion, $\Omega{ ightarrow}1)$
	after Inflation: Baryogenesis
	matter vs antimatter excess created
$\sim 10^{19}~{ m GeV}$	Planck epoch: quantum gravity; all forces unified (?)

Interlude

Cosmologist W. Allen Annie Hall (1977)

STELLAR EVOLUTION AND NUCLEOSYNTHESIS

Stellar Evolution and Nucleosynthesis

Overview

Star structure, evolution, nuke all determined by:

- mass
- composition
- (binarity)

theory: inputs: M, composition determine output: structure and evolution; history of $L, T_{\rm eff}, \tau$, nucleosynthesis

recall:

times $\tau(M)$ very strongly *inverse* with mass Q: *implications for stellar populations and nucleosynthesis*?

Stellar Lifetimes and Nucleosynthesis Roles

mass M	lifetime $ au(M)$	fate
$\lesssim 0.9 M_{\odot}$	$\gtrsim t_0$	"never" die
1 to $\sim 10 M_{\odot}$	10 Gyr to 30 Myr	red giant \rightarrow AGB \rightarrow white dwarf + PN
$\gtrsim 10 M_{\odot}$	\lesssim 30 Myr	supernova

- low-mass stars just "accumulate"
 - \Rightarrow ''sinks'' for baryons and nucleosynthesis products
- high-mass stars rapidly die:
 - \rightarrow first sources of post-big bang elements
 - \rightarrow many supernova ''generations'' till today
- different nucleosynthesis roles for different masses