Astro 596/496 NPA Lecture 27 Oct. 26, 2009

Announcements:

• Preflight 5 posted, due noon Friday

Last time: Solar Neutrino Problems and Solution

- Q: what are the problems?
- Q: what are the two main classes of solution? (pre-SNO)
- *Q:* how does SNO show the nature of the solution?
- *Q:* what does SNO imply for neutrino physics?

 \vdash

Solar Neutrino Problem(s) Pre-SNO

observed ν fluxes less than Standard Solar Model predictions

- Radiochemical: Chlorine, Gallium
- Water Čerenkov: Super-Kamiokande

but $\nu_{super-k}$ point back to Sun, have expected energy spectrum

Possible Solutions

- Standard Solar Model wrong– ν flux overpredicted (but pp?)
- Standard Model of particle physics wrong

Experimentum Crucis: SNO

- independently measure ⁸B ν_e flux, all-flavor flux
- $\Phi_{\nu_e} / \Phi_{tot} = 0.31$
- \Rightarrow large non- ν_e flux arriving in detectors!

Implications: New Neutrino Physics!

The Sun makes only ν_e *Q: why? e.g., why not* ν_{μ} ? \rightarrow if no new ν physics, only ν_e at Earth \rightarrow predict $\Phi_{CC}(\nu_e) = \Phi_{NC}(\nu_x)$

SNO measures $\Phi_{NC}(\nu_x) > \Phi_{CC}(\nu_e)!$ with *very* high confidence! non- ν_e flux arriving in detector!

A big deal:

- demands new neutrino physics
- $_{\omega}$ indep. of detailed solar model

Triumph of the Standard Solar Model

SNO bonus: can infer total ⁸B ν flux compare Bahcall SSM (Bahcall & Pinsonneault 2004):

$$\Phi_{\text{SSM}}(^{8}\text{B}) = 5.79(1 \pm 0.23) \times 10^{6} \ \nu \ \text{cm}^{-2} \ \text{s}^{-1}$$
$$= [0.88 \pm 0.04(\text{exp}) \pm 0.23(\text{thy})] \Phi_{\text{NC}}^{\text{SNO}}$$

consistent! SSM working extremely well!
⇒ major triumph for stellar evolution!
woo hoo!

2002 Nobel Prize in Physics: Ray Davis

Interlude: Updike Poem

Solar Neutrino Schizophrenia

total $\nu_e + \nu_\mu + \nu_\tau$ flux *in detectors agrees* with SSM flux *out of solar core*

but solar ν s must *start as* ν_e

 \rightarrow neutrinos must **transmute** on the way!

i.e., $\nu_e \rightarrow \nu_{\mu,\tau}!$

there's more:

σ

$ u_e$ Experiment	$E_{ u,min}$ Threshold	Obs/SSM
Gallium	> 0.233 MeV	$0.59 \pm 0.06 \pm 0.04$
Chlorine	>0.814 MeV	$0.33 \pm 0.03 \pm 0.05$
Super-K	> 5 MeV	\sim 0.4

 \Rightarrow transmutations must be energy-dependent:

Q: what should dependence be like?

www: solar nu spectrum

Solar Neutrino Transformation Properties

Need:

- small ν_e suppression at low energies (pp: \lesssim 0.4 MeV)
- large ν_e suppression (> 50%) at higher energies

Non-trivial neutrino physics required!

Neutrino Oscillations in Vacuum: The Quantum Neutrino

If neutrinos have nonzero mass

• family status $(e, \mu, \tau$ "flavor"), and

• mass

00

can be **distinct**!

 ν family \rightarrow lepton number conservation in Weak interactions formally, νs couple to Weak interaction as

flavor eigenstates

flavor basis vectors $|\nu_{\alpha}\rangle$, $\alpha = e, \mu, \tau$

free (vacuum) neutrino \rightarrow propagates as mass eigenstate

mass basis vectors $|j\rangle$, j = 1, 2, 3

Basis Transformation: Flavor/Weak \leftrightarrow Mass/Vacuum

Key idea: **mass eigenstate** \neq **flavor eigenstate** analogous to spin- $\frac{1}{2}$: S_z eigenstates $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vs S_x eigenstates $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ basis vector in one scheme is linear combo of *both* basis vectors in other

either basis a valid description of ν state physical situation selects most natural choice:

- ν production/detection: Weak interaction \rightarrow *flavor* basis
- ν propagation in vacuum \rightarrow *mass* basis

basis vectors related by linear transformation

(P)MNS=Pontecorvo, Maki, Nakagawa, Sakata matrix

$$\nu_{\text{flavor}}\rangle_{i\in e,\mu,\tau} = \sum_{j=1,2,3} U_{ij} |\nu_{\text{mass}}\rangle_j$$
(1)

$$|\nu_{\text{mass}}\rangle_{i\in 1,2,3} = \sum_{j=e,\mu,\tau} U_{ij}^{\dagger} |\nu_{\text{flavor}}\rangle_j$$
 (2)

9

U is time-indep, unitary: $U^{-1}=U^{\dagger};\;U^{\dagger}U=UU^{\dagger}=1$

Neutrino Flavor Change

Key idea:

- neutrinos *born* in Weak interactions
 - \rightarrow *created* as *Weak* eigenstates
- *propagate* as *vacuum* eigenstates
- then *detected* in *Weak* interactions

Evolution of wavefunction during propagation *changes probability* of remaining a ν_e state

If mass eigenstates have definite p and thus $E_j = \sqrt{p^2 + m_j^2}$ (as in vaccum), then Schrödinger:

$$i\hbar \frac{d}{dt}|\nu_{\text{mass}}\rangle_j = H_{\text{vacuum}}|\nu_{\text{mass}}\rangle_j = E_j|\nu_{\text{mass}}\rangle_j$$
 (3)

and so

10

$$|\nu_{\text{mass}}(t)\rangle_j = e^{-iE_jt/\hbar} |\nu_{\text{mass}}(0)\rangle_j$$
 (4)

Two flavors: allow 2 flavors (*e* and *x*) to mix write $|f\rangle = U_{\text{Vac}}|m\rangle$, where

$$U_{\mathsf{V}} = \begin{pmatrix} \cos\theta_{\mathsf{V}} & \sin\theta_{\mathsf{V}} \\ -\sin\theta_{\mathsf{V}} & \cos\theta_{\mathsf{V}} \end{pmatrix}$$
(5)

with vacuum mixing angle $heta_V \in (0,\pi/4)$ (" u_e mostly u_1 ")

$$|\nu_e(t)\rangle = e^{-iE_1t/\hbar}\cos\theta_V|1\rangle + e^{-iE_2t/\hbar}\sin\theta_V|2\rangle$$
(6)

where E_1 , E_2 have same momentum p

Solar neutrinos start (t = 0) as pure ν_e QM **amplitude** at t to *remain* ν_e :

$$\langle \nu_e(0) | \nu_e(t) \rangle = e^{-iE_1 t/\hbar} \cos \theta_{\mathsf{V}}^2 + e^{-iE_2 t/\hbar} \sin \theta_{\mathsf{V}}^2 \tag{7}$$

 \Rightarrow probability to remain ν_e :

11

$$|\langle \nu_e(0)|\nu_e(t)
angle|^2 = 1 - \sin^2 2\theta_V \sin^2 \left[1/2 \ \frac{(E_2 - E_1)t}{\hbar}\right]$$

Since
$$m(\nu_i) \ll p$$
, $E_j = \sqrt{p^2 + m_j^2} \simeq p^2 + m_j^2/2p$, and
 $E_2 - E_1 \simeq \frac{m_2^2 - m_1^2}{2E} = \frac{\pm \Delta m^2}{2E}$
(8)
 $\Delta m^2 = |m_2^2 - m_1^2| > 0$
 $E = \text{avg energy.}$

In time t go distance
$$L \simeq ct$$

$$P(\nu_e^{\text{birth}} \rightarrow \nu_e^{\text{detect}}) = |\langle \nu_e(0) | \nu_e(t) \rangle|^2$$

$$= 1 - \sin^2 2\theta_V \sin^2 \left(\pi \frac{L}{L_V}\right) \qquad (9)$$

$$= 1 - \sin^2 2\theta_V \sin^2 \left[1.27 \frac{\Delta m^2 (\text{eV}^2) L(\text{km})}{E(\text{GeV})}\right]$$

the where $L_V = 4\pi \hbar E / \Delta m^2$ "vacuum osc. length"

$$P(\nu_e^{\text{birth}} \rightarrow \nu_e^{\text{detect}}) = |\langle \nu_e(0) | \nu_e(t) \rangle|^2 = 1 - \frac{\sin^2 2\theta_V}{\sin^2 \left(\frac{\pi L}{L_V}\right)}$$

Minimum mass sensitivity: $\pi L/L_V = \pi/2$ If $L_V \ll 1$ AU: wash out differences among species If $L_V \simeq 1$ AU: solve solar ν problem!

$$\Delta m^2 \sim 10^{-12} \text{ eV}^2 \left(\frac{E}{10 \text{ MeV}}\right) \tag{10}$$

solves solar ν problem, but dubious

Q: why?

 \Rightarrow "just-so" solution

also note: if Δm^2 larger, $L_V \ll 1 A U$

$$\Rightarrow |\langle \nu_e(0) | \nu_e(t) \rangle|^2 \simeq 1 - \frac{1}{2} \sin^2 2\theta \ge \frac{1}{2}$$
(11)

13

but we need suppression > 50%! can't do this with vaccuum oscillations!