Astro 596/496 NPA
 Lecture 28
 Oct. 28, 2009

Announcements:

- Preflight 5 due noon Friday

Last time: Neutrino Oscillations
SNO total neutrino flux \rightarrow solar models correct
\rightarrow observed ν_{e} deficit due to new neutrino physics
Q: what do solar neutrino experiments require of new physics?
Q: in what way to neutrinos "oscillate"?
Q: what is the role of quantum mechanics?
Disappearance probability for ν_{e}
$\vdash \quad P\left(\nu_{e} \rightarrow \nu_{x}\right)=\sin ^{2} 2 \theta \vee \sin ^{2}\left[12.7 \frac{\Delta m^{2}\left(10^{-4} \mathrm{eV}^{2}\right) R(\mathrm{~km})}{E(\mathrm{MeV})}\right]$
Q: what is θ_{V} ? Δm^{2} ?

Solar neutrino experiments $\rightarrow E$-dependent ν_{e} suppression more suppression at higher E
if neutrinos have different nonzero masses, possible that mass/propagation eigenstates \neq production/Weak eigenstates evolving quantum phases \rightarrow interference \rightarrow oscillations

Probability of remaining ν_{e} :

$$
P\left(\nu_{e}^{\text {birth }} \rightarrow \nu_{e}^{\text {detect }}\right)=\left\|\left\langle\nu_{e}(0) \mid \nu_{e}(t)\right\rangle\right\|^{2}=1-\sin ^{2} 2 \theta \vee \sin ^{2}\left(\frac{\pi L}{L_{\vee}}\right)
$$

where $L_{V}=4 \pi \hbar E / \Delta m^{2}=0.75 \mathrm{~km}\left(E_{\nu} / 1 \mathrm{GeV}\right)\left(1 \mathrm{eV}^{2} / \Delta m^{2}\right)$
for source sizes $R \gg L_{V}$ and observed distances $L \gg L_{V}$
$\left\langle P\left(\nu_{e}^{\text {birth }} \rightarrow \nu_{e}^{\text {detect }}\right)\right\rangle=1-\sin ^{2} 2 \theta_{\vee}\left\langle\sin ^{2} \pi \frac{L}{L_{\vee}}\right\rangle=1-\frac{1}{2} \sin ^{2} 2 \theta \geq \frac{1}{2}$
but we need suppression $>50 \%$!
can't do this with vacuum oscillations!

Neutrino Oscillations in Matter

MSW = Mikheyev, Smirnov, Wolfenstein
ν s pass thru matter twice (in Sun, in Earth)
all ν types can have NC interactions
but ν_{e} have extra CC interactions ($\nu e \rightarrow \nu e$)
selectively modifies ν_{e} flux
ν_{e} potential in matter: $V_{e}(r)=\sqrt{2} G_{\mathrm{F}} n_{e}(r)$
put $\left\langle\nu_{e}(0) \mid \nu_{e}(t)\right\rangle=c_{e}(t)$, similar $c_{x}(t)$
Schrödinger equation + algebra:

$$
i \hbar \frac{d}{d t}\binom{c_{e}}{c_{x}}=\frac{1}{4 E}\left(\begin{array}{cc}
-\Delta m^{2} \cos 2 \theta_{v}+2 \sqrt{2} G_{F} n_{e} E & \Delta m^{2} \sin 2 \theta_{v} \\
\Delta m^{2} \sin 2 \theta_{v} & \Delta m^{2} \cos 2 \theta_{v}-2 \sqrt{2} G_{F n_{e} E}
\end{array}\right)\binom{c_{e}}{c_{x}}
$$

Q: evolution as $n_{e} \rightarrow \infty$? $n_{e} \rightarrow 0$?
$\omega \quad Q$: condition for maximal mixing?
Q: so how will ν states evolve when propagating from solar core?
maximal mixing ("resonance") when diagonal elements zero:
$\rightarrow 2 \sqrt{2} E G_{\mathrm{F}} n_{e}=\Delta m^{2} \cos 2 \theta_{\mathrm{V}}$: density-dependent!

$$
\begin{aligned}
m_{u} n_{e}^{c r i t} & =\frac{m_{u} \Delta m^{2} \cos 2 \theta \vee}{2 \sqrt{2} G_{F} E} \\
& =66 \mathrm{~g} \mathrm{~cm}^{-2} \cos 2 \theta \vee\left(\frac{E}{10 \mathrm{MeV}}\right)^{-1}\left(\frac{\Delta m^{2}}{10^{-4} \mathrm{eV}^{2}}\right)
\end{aligned}
$$

Can happen in Sun! No fine tuning needed!

- start as ν_{e}, in dense region where $n_{e}>n_{e}^{\text {crit }}$ neutrinos leave, seeing a dropping electron density
- reach $n_{e}=n_{e}^{\text {crit }} \rightarrow$ change to ν_{x}
- continue to Earth
works for range of $\Delta m^{2} Q$: how?
- But note energy dependence:

Q: what energies, ν populations, experience MSW?

Solar Neutrino Solutions

Using all solar ν data, most favored solution:

* $\theta_{V}=32.5^{\circ}$
$\star \Delta m^{2}=7.1 \times 10^{-5} \mathrm{eV}^{2}$

Implications

- "large mixing angle" (LMA)

Q: what angle gives maximal vacuum mixing? ...hint:

$$
\binom{\nu_{e}}{\nu_{x}}=\left(\begin{array}{cc}
\cos \theta \vee & \sin \theta \vee \\
-\sin \theta_{\checkmark} & \cos \theta_{\bigvee}
\end{array}\right)\binom{\nu_{1}}{\nu_{2}}
$$

- $\Delta m^{2}=\left|m_{2}^{2}-m_{1}^{2}\right|$ does not give either m_{1} or m_{2} but does set minimum mass for either: $m_{\nu, \min }=\sqrt{\Delta m^{2}}=8 \times 10^{-3} \mathrm{eV}$
Q : how to test this solution in the lab?

Laboratory test: KamLAND

(Kamiokande Liquid Scintillator Anti-Neutrino Detector) sources: anti-neutrinos from Japanese nuke reactors

- $E_{\nu}=2.6-8 \mathrm{MeV}$
- avg distance $R \sim 180 \mathrm{~km}$
\rightarrow if LMA, disappearance probability is

$$
\begin{equation*}
P_{\mathrm{dis}}=\sin ^{2} 2 \theta v \sin ^{2}\left(2 \pi \frac{R}{350 \mathrm{~km}}\right) \tag{1}
\end{equation*}
$$

Kamland observes flux reduction: $P_{\text {dis }}=0.66$ E_{ν} spectrum $\rightarrow \Delta m^{2}=7.9_{-0.5}^{+0.6} \times 10^{-5} \mathrm{eV}^{2}$
\rightarrow confirms oscillations in general, and LMA in particular!
www: KamLAND plots
Solar Neutrino Problem Solved!
Q: remaining questions? experiments?

Next Step: Precision Neutrino Astronomy

- measure monoenergetic ${ }^{7} \mathrm{Be}$ neutrinos now detected in real-time!
flux consistent with MSW LMA
www: Borexino
- measure $p p$ flux to $\sim 1 \% \Rightarrow$ better $\theta \vee$ www: DUSEL--proposed, under review

New questions:
What are ν masses?
oscillations only measure splittings Δm^{2}
\rightarrow know masses are different and nonzero
\downarrow but don't even know hierarchy: is $m_{1}<m_{2}$ or the reverse?

Is ν_{i} identical to $\bar{\nu}_{i}$?
yes: "Majorana" neutrinos
no: "Dirac" neutrinos, right-hand ν exist
can test with "neutrinoless double beta decay"
(rare nuclear decays, only go if Majorana)

Do neutrinos violate $C P$?
if so: maybe important in baryogenesis...
"leptogenesis" scenario: generate net lepton number, then translate this to net baryon number

Massive Stars
Neutrinos and Nucleosynthesis

Evolution of Massive Stars

in our context, massive \rightarrow core-collapse: $M \gtrsim 8-10 M_{\odot}$
Main sequence:

- short MS lifetime ($\lesssim 30 \mathrm{Myr}$)
- $T_{c} \sim 3 \times 10^{7} \mathrm{~K}$
- burn $p \rightarrow{ }^{4} \mathrm{He}$ via CNO cycle
when H exhausted:
- homologous contraction
- H shell burning begins \rightarrow red giant • heat core \rightarrow ignite...

He burning via $3 \alpha \rightarrow{ }^{12} \mathrm{C}$
a 3-body reaction Q : how might this work

