Astro 596/496 NPA Lecture 28 Oct. 28, 2009

Announcements:

• Preflight 5 due noon Friday

Last time: Neutrino Oscillations SNO total neutrino flux \rightarrow solar models correct \rightarrow observed ν_e deficit due to new neutrino physics *Q: what do solar neutrino experiments require of new physics? Q: in what way to neutrinos "oscillate"? Q: what is the role of quantum mechanics?* Disappearance probability for ν_e

$$P(\nu_e \rightarrow \nu_x) = \sin^2 2\theta_V \sin^2 \left[12.7 \frac{\Delta m^2 (10^{-4} \,\mathrm{eV}^2) R(\mathrm{km})}{E(\mathrm{MeV})} \right]$$

Q: what is θ_V ? Δm^2 ?

 \vdash

Solar neutrino experiments $\rightarrow E$ -dependent ν_e suppression more suppression at higher E

if neutrinos have different nonzero masses, possible that mass/propagation eigenstates \neq production/Weak eigenstates evolving quantum phases \rightarrow interference \rightarrow oscillations

Probability of *remaining* ν_e :

N

$$P(\nu_e^{\text{birth}} \rightarrow \nu_e^{\text{detect}}) = \|\langle \nu_e(0) | \nu_e(t) \rangle\|^2 = 1 - \sin^2 2\theta_V \sin^2 \left(\frac{\pi L}{L_V}\right)$$

where $L_V = 4\pi \hbar E / \Delta m^2 = 0.75$ km ($E_\nu / 1$ GeV) (1 eV²/ Δm^2)

for source sizes $R \gg L_V$ and observed distances $L \gg L_V$

$$\langle P(\nu_e^{\text{birth}} \rightarrow \nu_e^{\text{detect}}) \rangle = 1 - \sin^2 2\theta_V \left\langle \sin^2 \pi \frac{L}{L_V} \right\rangle = 1 - \frac{1}{2} \sin^2 2\theta \ge \frac{1}{2}$$

but we need suppression > 50%! can't do this with vacuum oscillations!

Neutrino Oscillations in Matter MSW = Mikheyev, Smirnov, Wolfenstein

 ν s pass thru matter twice (in Sun, in Earth) all ν types can have NC interactions but ν_e have extra CC interactions ($\nu e \rightarrow \nu e$) selectively modifies ν_e flux

 $\nu_e \text{ potential in matter: } V_e(r) = \sqrt{2} G_F n_e(r)$ put $\langle \nu_e(0) | \nu_e(t) \rangle = c_e(t)$, similar $c_x(t)$ Schrödinger equation + algebra:

 $i\hbar \frac{d}{dt} \begin{pmatrix} c_e \\ c_x \end{pmatrix} = \frac{1}{4E} \begin{pmatrix} -\Delta m^2 \cos 2\theta_V + 2\sqrt{2} G_{\mathsf{F}} n_e E \\ \Delta m^2 \sin 2\theta_V \end{pmatrix} \begin{pmatrix} \Delta m^2 \sin 2\theta_V \\ \Delta m^2 \cos 2\theta_V - 2\sqrt{2} G_{\mathsf{F}} n_e E \end{pmatrix} \begin{pmatrix} c_e \\ c_x \end{pmatrix}$ $Q: \text{ evolution as } n_e \to \infty? \quad n_e \to 0?$ $\omega \quad Q: \text{ condition for maximal mixing}?$ $Q: \text{ so how will } \nu \text{ states evolve when propagating from solar core}?$

maximal mixing ("resonance") when diagonal elements zero: $\rightarrow 2\sqrt{2} EG_{F}n_{e} = \Delta m^{2} \cos 2\theta_{V}$: density-dependent!

$$m_u n_e^{\text{crit}} = \frac{m_u \Delta m^2 \cos 2\theta_V}{2\sqrt{2}G_F E}$$
$$= 66 \text{ g cm}^{-2} \cos 2\theta_V \left(\frac{E}{10 \text{ MeV}}\right)^{-1} \left(\frac{\Delta m^2}{10^{-4} \text{ eV}^2}\right)$$

Can happen in Sun! No fine tuning needed!

- start as ν_e , in dense region where $n_e > n_e^{\text{crit}}$ neutrinos leave, seeing a dropping electron density
- reach $n_e = n_e^{\text{crit}} \rightarrow change to \nu_x$
- continue to Earth works for range of $\Delta m^2~Q$: how?
- But note energy dependence:

Q: what energies, ν populations, experience MSW?

Solar Neutrino Solutions

Using all solar ν data, most favored solution:

Implications

• "large mixing angle" (LMA)

Q: what angle gives maximal vacuum mixing? ...hint:

$$\begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = \begin{pmatrix} \cos\theta_{\mathsf{V}} & \sin\theta_{\mathsf{V}} \\ -\sin\theta_{\mathsf{V}} & \cos\theta_{\mathsf{V}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• $\Delta m^2 = |m_2^2 - m_1^2|$ does *not* give either m_1 or m_2 but does set *minimum* mass for either: $m_{\nu,\min} = \sqrt{\Delta m^2} = 8 \times 10^{-3} \text{ eV}$

С

Q: how to test this solution in the lab?

Laboratory test: KamLAND

(Kamiokande Liquid Scintillator Anti-Neutrino Detector) sources: anti-neutrinos from Japanese nuke reactors

- $E_{\nu} = 2.6 8 \text{ MeV}$
- \bullet avg distance $R\sim 180~{\rm km}$
- \rightarrow if LMA, disappearance probability is

$$P_{\rm dis} = \sin^2 2\theta_{\rm V} \, \sin^2 \left(2\pi \frac{R}{350 \,\rm km} \right) \tag{1}$$

Kamland observes flux reduction: $P_{dis} = 0.66$ E_{ν} spectrum $\rightarrow \Delta m^2 = 7.9^{+0.6}_{-0.5} \times 10^{-5} \text{ eV}^2$ \rightarrow confirms oscillations in general, and LMA in particular! www: KamLAND plots

Solar Neutrino Problem Solved!

Q: remaining questions? experiments?

Next Step: Precision Neutrino Astronomy

- measure monoenergetic ⁷Be neutrinos now detected in real-time! flux consistent with MSW LMA www: Borexino
- measure pp flux to $\sim 1\% \Rightarrow$ better θ_V www: DUSEL--proposed, under review

New questions:

```
What are \nu masses?
```

oscillations only measure splittings Δm^2

- \rightarrow know masses are *different* and *nonzero*
- \neg but don't even know hierarchy: is $m_1 < m_2$ or the reverse?

Is ν_i identical to $\bar{\nu}_i$?

yes: "Majorana" neutrinos no: "Dirac" neutrinos, right-hand ν exist can test with "neutrinoless double beta decay" (rare nuclear decays, only go if Majorana)

Do neutrinos violate CP?

if so: maybe important in baryogenesis...

"leptogenesis" scenario: generate net *lepton* number, then translate this to net baryon number

Massive Stars

Neutrinos and Nucleosynthesis

Evolution of Massive Stars

in our context, massive \rightarrow core-collapse: $M \gtrsim 8 - 10 M_{\odot}$

Main sequence:

- short MS lifetime (\lesssim 30 Myr)
- $T_c \sim 3 \times 10^7$ K
- burn $p \rightarrow {}^{4}He$ via CNO cycle

when H exhausted:

- homologous contraction
- H shell burning begins \rightarrow red giant heat core \rightarrow ignite...

He burning via $3\alpha \rightarrow ^{12}C$

⁶ a 3-body reaction *Q: how might this work*