Astro 596/496 NPA Lecture 29 Oct. 30, 2009

Announcements:

- Preflight 5 was due at noon
- Problem Set 5 out, due next Friday

Last time: began massive stars

Main sequence:

 \vdash

- burn $p \rightarrow {}^{4}$ He via CNO cycle when H exhausted:
- homologous contraction
- H shell burning begins \rightarrow supergiant
- heat core \rightarrow ignite...

He burning: via $3\alpha \rightarrow {}^{12}C \ Q$: how might this work

The Triple-Alpha Reaction

 $3\alpha \rightarrow {}^{12}C$ in two steps:

N

(1) $\alpha + \alpha \leftrightarrow {}^{8}$ Be establishes (small) 8 Be *equilibrium* $2\mu_{\alpha} = \mu_{8}$ $\Rightarrow n_{8}^{eq} \sim n_{\alpha}^{2}/(mT)^{3/2}e^{-Q/T}$ $Q = 0.092 \text{ MeV} \sim 10^{9} \text{ K} \Rightarrow \text{small abundance!}$

(2) ⁸Be +
$$\alpha \rightarrow {}^{12}C + \gamma$$

rate $\simeq \langle \sigma v \rangle n_{\alpha} n_8^{\text{eq}} \sim \langle \sigma v \rangle n_{\alpha}^3 / (mT)^{3/2} e^{-Q/T}$

but: He \rightarrow C burning too slow if cross section really, astrophysical S(E), is constant or slowly varying Q: and so? He \rightarrow C burning too slow if S(E) is constant Fredy Hoyle: reaction must pass through **resonance** ⁸Be + α lied just at excited state of ¹²C

```
Hoyle predicted existence of state,
soon confirmed by nuke experiment!
www: {}^{12}C energy level scheme
\rightarrow early example of cosmos as poor woman's accelerator
```

```
Along with <sup>12</sup>C production, also

<sup>16</sup>O production via <sup>12</sup>C(\alpha, \gamma)<sup>16</sup>O

Initially: 3\alpha \rightarrow {}^{12}C dominates

Then: <sup>12</sup>C source \propto n_{\alpha}^{3} low \rightarrow {}^{16}O made
```

key rate: ${}^{12}C(\alpha,\gamma){}^{16}O$

ω

- sets ejected $^{12}C/^{16}O$ ratio
- determines later stellar evolution
- uncertain (but getting better!)

When He exhausted, begin cycles:

• contract

4

- ignite new shell burning
- \bullet ignite ash \rightarrow fuel in core
- burn core to exhaustion repeat...

develop "onion skin" structure: www: pre-SN favors " α -elements" : tightly bound

$$\begin{array}{cccc} \text{C burning:} & {}^{12}\text{C} + {}^{12}\text{C} & \rightarrow & {}^{20}\text{Ne} + \alpha \\ \hline \text{Ne burning:} & {}^{20}\text{Ne} + \gamma & \rightarrow & {}^{16}\text{O} + \alpha \\ & {}^{20}\text{Ne} + \alpha & \rightarrow & {}^{24}\text{Mg} + \gamma \\ & {}^{24}\text{Mg} + \alpha & \rightarrow & {}^{28}\text{Si} + \gamma \\ \hline \text{O burning:} & {}^{16}\text{O} + {}^{16}\text{O} & \rightarrow & {}^{28}\text{Si} + \alpha \\ & & \rightarrow & {}^{32}\text{S} + \gamma \end{array}$$

Neutrino Cooling

At $T \gtrsim 5 \times 10^8$ K (C burn): neutrinos produced via $e^+e^- \rightarrow \nu \overline{\nu}$ much slower than $e^+e^- \rightarrow \gamma \gamma$ yet still crucial *Q: why?*

neutrino production rate per volume:

СЛ

$$q_{\nu} = \langle \sigma v n_e^2 \rangle \sim T^2 \times (T^3)^2 \sim T^8 \tag{1}$$

 ν escape \rightarrow dominate *E* loss: **neutrino cooling**

neutrino *E* loss rate per vol: $\varepsilon_{\nu} = E_{\nu}q \sim T^9$ equilibrium: $\varepsilon_{\text{emit},\nu} = \varepsilon_{\text{released,nuc}}$ $\rightarrow L_{\nu} \sim (1 - 10^6)L_{\gamma}$ for C thru Si burning: neutrino star! shortens burning phases final stages: months, days

Si Burning

 $T \sim 4 \times 10^9 \text{ K} \rightarrow n_{\gamma} \sim T^3 \text{ large}$ photodisintegration ${}^{28}\text{Si} + \gamma \rightarrow p, n, \alpha$ rate $\lambda_{\gamma} \propto e^{-Q/T}$, Q = BE of p, n, α in nucleus 1. γ s take p, n, α from weakly bound nuclei 2. these recombine with all nuclei 3. flow \rightarrow more tightly bound Net effect: redistribute nucleons to most tightly bound www: Brad Meyer movie

Driven to nuclear statistical equilibrium (NSE) for $N_i n + Z_i p \leftrightarrow A_i$ chem eq: $N_i \mu_n + Z_i \mu_p = \mu_i$

$$Y_{i} = \frac{n_{i}}{n_{B}} \sim \left(\frac{\rho}{(mT)^{3/2}}\right)^{A_{i}-1} Y_{n}^{N_{i}} Y_{p}^{Z_{i}} e^{+B_{i}/T}$$
(2)

σ

with B_i = binding energy max ~ largest B_i Q: namely? NSE parameters: T, ρ, Y_n, Y_p but Y_n, Y_p related via charge conservation ("neutron excess"):

$$\eta = \frac{\sum_{i} (N_i - Z_i) n_i}{\sum_{i} (N_i + Z_i) n_i} = \sum (N_i - Z_i) Y_i = 1 - 2Y_e$$

where $Y_e \in (0, 1)$ is the "electron fraction" (PS1)

After H burn $\rightarrow {}^{4}$ He: $\eta \simeq 0$ If no β decays later, η unchanged At $\eta = 0$, NSE max not at 56 Fe but at double magic $N_i = Z_i = 28$: 56 Ni ...but 56 Ni unstable outside SN core! then decays \rightarrow crucial for light curve!

end with "*iron core*" $M_{core} \sim 1.4 M_{\odot} = M_{Chandra}$ max BE: fusion no longer exoergic!

Core Collapse

Why collapse?

00

(1) can't burn Fe \rightarrow degenerate core support: thermal, *e* degen pressure but do burn Si in overlying shell \rightarrow increase Fe core mass when $M_{\text{core}} > M_{\text{Chandra}} \rightarrow \text{collapse}$

(2) Fe core photodisintegrated e.g., ${}^{56}\text{Fe} \rightarrow 13\alpha + 4n$ electron capture $e^- + p \rightarrow n + \nu_e$ and $e^- + Z_A \rightarrow Z - 1_A + \nu_e$ "neutronization" or "deleptonization" \Rightarrow removes *e*, reduced degen. pressure also: releases ν_e s

Collapse Dynamics

Freefall timescale for material with density ρ : $\tau_{\rm ff} \sim 1/\sqrt{G\rho} \sim 446 \, {\rm s}/\sqrt{\rho_{\rm Cgs}} \lesssim 1 \, {\rm sec}$ but pre-supernova star very non-uniform density *Q: what does this mean for collapse?*

inner core: homologous collapse $v \propto r$ outer core: quicly becomes supersonic $v > c_s$ outer envelope: unaware of collapse

Bounce and Explosion

core collapses until $\rho_{core} > \rho_{nuc} \sim 3 \times 10^{14} \text{ g/cm}^3$ repulsive sort-range nuclear force dominates: *"incompressible"* details depend on equation of state of nuke matter

1. core bounce \rightarrow proto neutron star born

- 2. shock wave launched
- 3. a miracle occurs
- 4. outer layers *accelerated Demo: AstroBlaster*[™]
- 5. successful explosion observed

 $\rightarrow v_{\rm ej} \sim 15,000 \ {\rm km/s} \sim c/20!$

Why step 3? What's the miracle? "prompt shock" fails: do launch shock, but • overlying layers infalling \rightarrow ram pressure $P = \rho v_{in}^2$ • dissociate Fe \rightarrow lose energy shock motion stalls \rightarrow "accretion shock" "prompt explosion" mechanism fails

Q: what needed to revive explosion?

Delayed Explosion Mechanisms

"delayed explosion" to revive: neutrinos, 3-D hydro/instability, rotation effects? some models not work, but controversial

Energetics:

 $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim (10 M_\odot) (c/20)^2 \sim 10^{51} {\rm ~erg} \equiv 1$ foe but must relase grav binding

$$\Delta E \sim -GM_{\star}^2/R_{\star} - (-GM_{\rm NS}^2/R_{\rm NS})$$

$$\simeq GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53} \text{ erg} = 300 \text{ foe}$$

Q: Where does the rest go?

 \Rightarrow SN calculations must be good to $\sim 1\%$

 $\overline{5}$ to see the minor optical fireworks

12