Astro 596/496 NPA Lecture 30 Nov. 2, 2009

Announcements:

- No class meeting Wednesday!
- Problem Set 5 due Friday ... but next Monday okay too
- Astro Colloquium here, tomorrow, **3:30pm** George Sonneborn (NASA) on *James Webb Space Telescope*
- Physics Colloquium Thursday, 4pm, 141 Loomis Matthew Strassler (Rutgers) on the *Large Hadronic Collider*

Supernova Energetics:

- mechanical (kinetic) energy in visible (bayonic) explosion $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim 10^{51} {\rm ~erg} \equiv 1 {\rm ~foe}$
- explosion energy release: grav binding of proto-neutron star $\Delta E \sim GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53}$ erg = 300 foe
- Q: Where does the rest go?
- Q: Implications for models of baryonic explosion?

Supernova Neutrinos

two phases of neutrino emission:

- 1. neutronization
- 2. thermal emission

neutronization neutrinos produced before collapse emitted over < 1 sec, leave freely

during collapse: thermal ν s still produced, initially leave freely but core \rightarrow nuke density:

• very high
$$T\sim 4-8~{
m MeV}\sim 10^{10}~{
m K}$$

• very high $n_{\nu} \sim T^3$ neutrino mean free path $\ell_{\nu} = 1/(n_{\text{nuc}}\sigma_{\nu})$ becomes small i.e.: $\ell_{\nu} \lesssim R_{\text{NS}}$

 $_{N}$ Q: what happens to these thermal neutrinos?

- Q: will they ever escape? if so, how?
- *Q:* neutrino telescope time signature? flavors? anti- ν ?

Supernova Neutrinos

when dese core has $\ell_{\nu} \lesssim R_{\rm NS}$: neutrinos trapped proto-neutron star develops "neutrinosphere" size set by radius where ~ 1 scattering to go: $r \sim \ell_{\nu}(r)$

inside r_{ν} : weak equilibrium \rightarrow "neutrino star"

- all species ν_e, ν_μ, ν_τ and $\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau \approx$ equally populated
- ν_e have extra charged-current interactions slightly different T_{ν} and r_{ν}

neutrinos still leave, but must diffuse emit neutrinos & energy (cool) over diffusion time $\tau_{\rm diff}=3r^2/\ell_{\nu}\sim 10~{
m s}$

ω

Q: how to test this? Two ways! ...only one worked so far...

Supernova 1987A

explosion: Feb 23, 1987, in Large Magellanic Clous (LMC) $d_{LMC} \sim 50 \text{ kpc} - \text{nearest}$ (known) event in centuries spectrum: shows H: Type II event \rightarrow core collapse pre-explosion images: progenitor $M \sim 20 M_{\odot}$ blue supergiant

(baryonic) explosion energy 1.4 ± 0.6 foe no pulsar seen (yet) \rightarrow could there be a black hole instead?

```
ejecta: M(O) \sim 2M_{\odot} observed
also N, Ne, Mg, Ni ...
```

light echoes: outburst reflections off surrounding material allow for 3-D reconstruction of pre-explosion environment!

SN1987A: Light Curve

light curve: luminosity L vs twww: 1987A bolometric (all-wavelength) light curve

- initially, powered by thermal energy, then adiabatically cool
- after ~ 1 month: powered by ⁵⁶Ni decay: ⁵⁶Ni \rightarrow ⁵⁶Co $e^+ \nu_e \rightarrow$ ⁵⁶Fe $e^+ \nu_e$ (PS5) *Q: how can you test that this is the power source?*
- really: decay to excited state ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Co}^{gs} + \gamma$ ${}^{56}\text{Co}$ de-excitation γ s seen at 0.847 MeV and 1.238 MeV but: seen earlier than expected for onion-skin star *Q: what does this mean?*
- σ

SN 1987A Neutrino Signal

SN 1987A detected in neutrinos

first extrasolar (in fact, extragalactic!) ν s birth of neutrino astrophysics

Reliable detections: water Čerenkov

- Kamiokande, Japan
- IMB, Ohio, USA

observed ~ 19 neutrinos (mostly $\bar{\nu}_e$) in 12 sec www: ''neutrino curve''

detected $\sim few$ hrs before optical signal

Q: Why?

σ

Q: what info-qualitative and quantitative-do the ν s give?

Qualitatively

neutrino detection demonstrates basic correctness of core-collapse picture

Quantitatively

 ν time spread: probes diffusion from protoneutron star ν flux, energies: $\langle E_{\nu} \rangle^{\text{obs}} \sim 15 \text{ MeV}$

 \Rightarrow -neutrino energy release $\mathcal{E}_{\overline{\nu}_e} \sim \mathcal{E}_{\nu}/6 \sim 8 \times 10^{52}$ erg

Q: why divide by 6?

 $\Rightarrow \mathcal{E}_{
u} \sim 4 imes 10^{53}$ erg

~

 \Rightarrow observational confirmation:

by far, most ΔE released in ν s

 \Rightarrow basic core collapse picture on firm ground!

Also: signal probes ν & particle physics

www: 2002 Nobel Prize in Physics: Masatoshi Koshiba

Nearby Supernovae: May We Have Another?

Today: ready for another SN!

for event at 10 kpc, Super-K will see \sim 5000 events gravity waves?

candidates: Betelgeuse? Eta Carinae?

But don't get too close!

- minimum safe distance: \sim 8 pc
 - *Q*: why would this ruin your whole day?
 - *Q: should we alert Homeland Security today?*

 \odot