Astro 596/496 NPA Lecture 32 Nov. 9, 2009

Announcements:

- Problem Set 5 really due
- Preflight 6 posted, due next *Monday* noon

Last time: Gamma-Ray Bursts *Q: what are their key observed properties? Q: what are implications of Galactic vs extragalactic GRB origins?*

Н

Gamma-Ray Burst Key Properties

- observed rate ~ 300 events/yr \rightarrow 1 GRB/day!
- *no repeat events* from same direction
- duration (time above background): ~ 0.1 sec to $\sim 10^2$ sec
- time history (*lightcurves*): highly nonuniform some highly variable: 100% modulation on \sim 1 msec timescales!
- energy spectra: typically $\epsilon_{peak} \sim few \times 100 \text{ keV}$
- fluence $\mathcal{F}_{\gamma} = \int_{\text{burst}} F_{\gamma}(t) dt$ $\mathcal{F}_{\gamma}^{\text{BATSE}} \sim 10^{-7} - 10^{-4} \text{ erg/cm}^2$

GRB Distance Scale and Sources

Galactic models: (favored pre-BATSE) ~ all observed bursts within our Galaxy energetics requirements modest → neutron stars? event rates high: many sources needed bursts a very common, frequent occurence in a galaxy

Cosmological models:

bursts come from other galaxies, typically very distant: substantial fraction of max distance $\sim d_H$ energetics requirements enormous! \gg SN baryonic energies *event rates* low: only 1 GRB/day/observable Universe bursts a very rare occurance in a galaxy rate per galaxy $\sim 3 \times 10^{-5}$ GRB/century compare: core-collapse supernova rate $\sim few$ /century

ω

Q: what information (from BATSE alone) would discriminate the Galactic vs cosmo pictures?

Implications of Variability

GRBs can be highly variable, with $\delta F/F \sim 1$ on the smallest observable timescales, $\delta t \sim 1$ msec

but if entire signal varies, has to reflect coordinated behavior of *entire source* i.e., source luminosity has $L = F_{surface}A_{emit}$ and so $\delta L/L \sim \delta A_{emit}/A_{emit} \sim 2\delta R_{emit}/R_{emit}$

in time δt , max change in emitting region R_{emit} is $\delta R \leq \delta R_{\text{max}} = c \ \delta t$ and so given observed variability, can put *upper limit* on source size: $\delta R_{\text{max}}/R \geq \delta R/R \leq 1/2 \ \delta L/L \sim 1/2$

$$R_{\rm emit} \lesssim 2R_{\rm max} = \frac{c \ \delta t}{2} \simeq 6 \times 10^7 \ {\rm cm} = 600 \ {\rm km} \ll R_{\oplus}, R_{\odot}$$

* emitting region must be *tiny*! **compact source required** – neutron star?! black hole?!

Implications of Fluence Distribution

consider "standard candle" approximation

all bursts have same intrinsic γ energy output E_{γ} for burst at distance d, observed fluence is $\mathcal{F} = E_{\gamma}/4\pi d^2$ and so $d(\mathcal{F}) = \sqrt{E_{\gamma}/4\pi\mathcal{F}} \propto \mathcal{F}^{-1/2}$ fluence distribution probes source spatial distribution

for uniform spatial (number) density n_{grb} of GRB sources within distance d, number of bursts $N(< d) = 4\pi/3 n_{grb} d^3 \propto d^3$ so number $N(>\mathcal{F})$ of bursts with fluence $>\mathcal{F}$ is

$$N(>\mathcal{F}) = 4\pi/3 \ n_{\text{grb}} d(\mathcal{F})^3 \propto d(\mathcal{F})^3 \propto \mathcal{F}^{-3/2}$$

Q: what is $N(> \mathcal{F})$ if no sources beyond some d_{\max} ? Q: what if GRB also have some intrinsic E_{γ} distribution? Q: what would be $N(> \mathcal{F})$ for Galactic GRB models? Q: what would be $N(> \mathcal{F})$ for cosmological GRB models? for infinite (Euclidean, static) distribution of sources: $N(>\mathcal{F}) \propto \mathcal{F}^{-3/2}$ for all fluence \mathcal{F}

if standard candles, but with distribution "edge" at d_{max} then should be $\mathcal{F}_{\min} = \mathcal{F}(d_{\max})$, and $N(>\mathcal{F}_{\min}) = 0!$ if intrinsic E_{γ} distribution ("luminosity function")

then a *range* of \mathcal{F} for each d

but still: $N(>\mathcal{F}) \propto \mathcal{F}^{-3/2}$ inside d_{max} , strong drop beyond

Galactic GRB: finite distribution

 \rightarrow expect break/turnover in fluence distribution

Cosmological GRB: infinite distribution \rightarrow expect $N(>\mathcal{F}) \propto \mathcal{F}^{-3/2}$ out to edge of observable U (but also cosmological redshifting effects)

www: observed fluence distribution

0

• shows $N(>\mathcal{F})\propto \mathcal{F}^{-3/2}$ for highest \mathcal{F}

but breaks, and is lower for much of observed range
⇒ most simply fit in Galactic model

Implications of Sky Distribution

GRB positions not well-determined by gamma-ray data (BATSE) localized to $\sim 1^{\circ}$

But for > 4700 bursts, *sky distribution* of events carries important information

Q: expected distribution in Galactic model (very nearby, all-Galaxy)?

Q: expected distribution in cosmological model?

Observed GRB Sky Distribution

www: BATSE sky distribution

isotropic to very high precision no correlation with Galactic plane

much more simply explained in cosmological model thanks to Cosmological Principle

in Galactic model: very difficult to avoid anisotropy

- ullet either sources very close: $d\ll$ disk scale height $\sim 100~{\rm pc}$
- \bullet or sources in Galactic "halo" spherical configuration, much larger than $R_\odot\sim 10~{\rm kpc}$
 - ... but must avoid signal from M31...

 ∞

The Great Debate

1995: Debate of Cosmo vs Galactic GRB models"The Distance Scale to Gamma-Ray Bursts"Bodhan Paczynski (cosmo) vs Don Lamb (Gal)

75th anniversary of 1920 Curtis-Shapley debate on "the Scale of the Universe" (are galaxies cosmological?)

strong arguments made by both my read of community sentiment then: heavily cosmo but no overwhelming consensus and puzzlement of cosmo energy requirements

key test needed: direct distance info for one or more GRB

Experimentum Crucis: GRB Afterglows

Recall: until 1997, no GRB seen at non- γ wavelengths \rightarrow can't identify source location, revisit after burst

1996–2002: BeppoSAX (Italian, Dutch, ESA)

- \bullet one instrument detected GRBs in $\gamma\text{-rays}$
- another detected X-rays in same field, arcmin resolution

GRB 970228: first BeppoSAX GRB event

- X-ray **afterglow** seen
- then optical afterglows found by ground-based telescopes
- after faded, distant galaxy seen as host!

GRB 970508: position found rapidly \rightarrow afterglow still bright

- optical spectrum \rightarrow absorption lines \rightarrow *redshift* $z_{abs} = 0.835$
- 10

Afterglows Observed

GRB afterglows have revolutionized the field many observed now, in all wavelengths from X-ray to radio

2004-present: NASA Swift

- gamma-ray instrument (BAT) for GRB detection
- telescope for afterglows: UV, Optical (UVOT)

www: UVOT afterglows

11

general afterglow behavior:

- spectrum a powerlaw in ν
- dimming an inverse powerlaw in time

redshifts usually obtained and/or host galaxy identified galaxies are always gas-rich = star-forming ("late type") where resolved: GRB is in *star-forming region* \Rightarrow GRBs connected to star-formation

Afterglow Scintillation: Beaming

GRB radio afterglows can be measured very sensitively \rightarrow can follow some for > 1 year

observed radio afterglows:

- \bullet strong variations for first \sim 1–2 months
- then smooth decay with time

key idea: fluctuations not due to GRB or its environment but rather **scintillation**= "*twinkling*" in Milky Way GRB afterglow: apparent angular size grows with time • at early times: source angular size small

single light path fluctuates in non-uniform interstellar MW

- \bullet at late time: source disk larger \rightarrow average over paths
- dividing scale: $\alpha_{\rm scint} \sim 3 \times 10^{-6}$ arcsec

For source at d = 1 Gpc afterglow size $R = \alpha_{scint}d \sim 0.01$ pc ~ 10 light-days!

but transition seen after 1 - 2 months \rightarrow afterglow region expanding at v = c!

GRBs are relativistic outflows!

13