Astro 596/496 NPA Lecture 33 Nov. 11, 2009

Announcements:

Preflight 6 due next Monday noon

Last time: the Distance Scale to Gamma-Ray Bursts

Q: what is this scale? how do we know?

Q: what are population studies? how are they useful for GRBs?

- *Q*: what's difficult about quantifying burst timescale? spectra?
- *Q:* how might you do it anyway?

GRB Populations: Timescales and Hardness

GRB lightcurves show wide diversity \rightarrow difficult to characterize succinctly...but worth trying

timescale duration to see photon signal *over background* depends on GRB fluence \rightarrow distance, and detector sensitivity largest confusion near background level so to avoid use $T_{90} \equiv$ time interval for 90% of signal or $T_{50} \equiv$ time interval for 50% of signal www: BATSE T_{90} distribution

GRB detailed γ spectra not available in BATSE only broadband ''colors''

N

hardness ratio of fluence in high- vs low-energy bands a GRB "color index" interesting to look at distribution and correlate with T_{90} www: T_{90} --hardness correlation

GRB Populations: Two Classes

BATSE bursts show:

- clear bimodal separation in timescale separation at $T_{90} \simeq 2$ sec
- less clear but bimodal separation in hardness
- groups in each are *correlated* → two GRB populations
 ★ short-hard bursts
 ★ long-soft bursts

Also note:

afterglows (almost) exclusively seen for the long-soft bursts so only long-soft bursts have confirmed association with active star formation

few short-hard bursts afterglows, host galaxies found
 but many are in elliptical galaxies,
 and not in active star-forming regions

How Relativistic are Bursts?

```
burst energy density is enormous
from know burst energies, timescales \rightarrow huge photon energy
density at source
```

 ε_{γ} so high that $\gamma\gamma \rightarrow e^{+}e^{-}$ efficient

 \rightarrow photons should create pairs \rightarrow rapidly thermalize

...but GRB emission nonthermal

cure: highly relativistic <u>outflow</u> Lorentz factor $\Gamma = 1/\sqrt{1 - v^2/c^2}$ nonstandard symbol to avoid confusion with γ -rays

if $\Gamma \gg 1$:

- blueshifting \rightarrow smaller rest-frame photon energies
- to avoid thermalization: need $\Gamma \gtrsim 100$!

```
bursts are ultrarelativistic!
```

Q: for comparison, what is Γ_{Fermilab} ?

GRB Afterglows: Beaming

several lines of evidence point to beamed burst geometry \rightarrow relativistic outflow confined to cone: opening angle θ

special relativity: light source with Γ has emission confined to region of angle $\sim 1/\Gamma$

thus: GRB emission initially highly collimated (radial photons!) \rightarrow observer initially sees only small part of emitting region

but as burst decelerates, larger emitting region seen

σ Q: what happens when $1/\Gamma > \theta$?

if outflow is in jet of angle θ then when $1/\Gamma > \theta$, photons more isotropic than jet \rightarrow more photons directed away from observer \rightarrow substantial sudden decrease in afterglow brightness

afterglow lightcurves: show slope change "breaks" imply significant beaming: $\theta \sim few \times 1^{\circ}$

 \rightarrow fraction of solid angle:

$$f_{\text{beam}} \equiv \frac{\Omega_{\text{beam}}}{4\pi} = \frac{1}{2}(1 - \cos\theta) \approx \theta^2/2 \sim \frac{1}{300}$$
(1)

Q: what does this imply for GRB properties? what changes, doesn't?

σ

Implications of Beaming: Event Rate, Energetics

given $f_{\text{beam}} = \Omega_{\text{beam}}/4\pi \sim 1/300 \ll 1$:

- we only see bursts aimed right at us
- energy output is highly anisotropic

energetics

typical *isotropic* energy output $E_{\gamma} = E_{\gamma}^{iso} = 4\pi d^2 \mathcal{F} \sim 100$ foe but this was an *overestimate*: correct value is

$$E_{\gamma} = \Omega d^2 \mathcal{F} = f_{\text{beam}} E_{\gamma}^{\text{iso}} \simeq 1$$
 foe

rate per galaxy

from observed burst rate of $\lambda_{obs} = 1/day/Universe$ per galaxy we infer $\dot{N}_{grb} = \dot{N}_{grb}^{iso} = \lambda_{obs}/N_{gal} \sim 3 \times 10^{-5}$ GRB/century but this was an *underestimate*, since $\lambda_{obs} = f_{beam}\lambda_{tot}$, so:

$$\dot{N}_{\rm grb} = \frac{\lambda_{\rm tot}}{N_{\rm gal}} = \frac{1}{f_{\rm beam}} \dot{N}_{\rm grb}^{\rm iso} \simeq 10^{-3} \text{ GRB/century} \sim 0.1 \text{ } \dot{N}_{\rm SN}$$

Long GRBs and Supernovae

hints of supernova association with long-soft bursts:

- given beaming; long-soft burst energetics, rate in line with supernova blasts
- long-soft bursts found in regions of active star formation

direct evidence: supernova outbursts seen in GRB afterglows!

- SN 1998bw seen in unusually low-energy GRB 980326
- SN 2003dh seen in "vanilla" GRB 030329
- supernova spectra derived \rightarrow no H, He I, Si II; lines all broad consistent with relativistic ejecta

all GRB-linked supernovae are Type Ic

very massive star, winds/companion remove outer layers
 ...but not all Type Ic make GRBs

Collapsar Model

How does a supernova make a GRB?

collapsar model (Woosley)

- very massive progenitor, rapid rotation
- \bullet black hole formed in core, ang momentum \rightarrow accretion disk
- relativistic jet created, punctures star www: jet simulation

What makes the jet? magnetohydrodynamic effects in GR?

www: Illinois Shapiro group GR magnetohydrodynamic collapse simulat:

ဖ