Astro 596/496 NPA Lecture 34 Nov. 13, 2009

Announcements:

• Preflight 6 due *Monday* noon

Last time: gamma-ray burst populations and physics

- *Q*: what evidence is there for two GRB populations?
- *Q: how are the populations different?*
- Q: what's the observed GRB-supernova association?
- *Q*: what's the leading theory model for this?
- Q: what should go into a theory model for the other GRB class?

 \vdash

Short-Hard Bursts

short-hard bursts:

N

- fewer bursts seen: $\sim 30\%$ of BATSE catalog closer? intrinsically fainter? both?
- few afterglows seen, not in active star-forming regions and many seen in elliptical galaxies
 - \rightarrow come from older population

What are the astrophysical sources?

neutron star mergers with other neutron stars or black holes

www: Illinois Shapiro group GR merger simulation

- neutron star "kicks": up to $\sim few \times 100$ km/s at explosion \rightarrow ejected from disk
- gravitational inspiral time long
 - \rightarrow mergers not connected to star formation
- possible sources of gravitational radiation

GRBs as Cosmic Engines and Probes

★ GRB prompt emission and afterglow as searchlights: like quasars, but temporary, and more democratically distributed \rightarrow probe of galactic, intergalactic medium at high z

 \star long-soft bursts connected with supernovae/star formation \rightarrow tracers of cosmic star-formation rate at high redshift?

 \star GRBs could be sources of high-energy (\gtrsim 1TeV) neutrinos

★ GRBs could be sources of ultra-high-energy $(\gtrsim 10^{19} \text{ eV})$ cosmic rays

ω

Gamma-Ray Bursts: Open Questions

much recent progress, but still many open questions

- what are the "central engines" of short-hard bursts?
- are all long-soft bursts connected with supernovae? are there long-lived signatures of these? elements? remnants?
- why don't all supernovae make bursts?
- what drives the relativistic jets?
- what is emission mechanism for the γ -rays? still unclear!
- *Swift* afterglow lightcurves show great diversity and unexpected color-dependent breaks—what's going on?
- 4

Job security! Stay tuned!

Type Ia Supernovae

Type Ia Supernovae

Thus far:

core collapse/"Type II" SN (massive star) but also: "Type Ia"

Light curves (brightness vs time):

- good news: all roughly similar
- bad news: real variations seen
 www: SN Ia light curves
- good news: peak luminosity, decay timescale *correlated*
- \rightarrow given timescale, infer luminosity
- → *standard(izable) candle*! enormously important for cosmology

σ

Type Ia Supernovae Observed

- \bullet SN Type I \rightarrow no H in spectrum
- Type Ia: He, Si lines are seen
- peak luminosity: $\sim 1^{mag}$ = factor 2.5 brighter than SN II \rightarrow easier to find, probe larger distances (higher z)
- ejecta somewhat faster than Type II events
- \bullet blast energies ~ 1 foe

1

- host galaxies: all types, including "red and dead" elliptical
- observed Type Ia rate $\sim 20\% 50\%$ of Type II but beware selection effects: easier to see Type Ia

Q: what physical ingredients needed to produce SN Ia?

Type Ia Supernovae: Ingredients

- no hydrogen → "stripped" star need either wind or companion
- found in all galaxies
 - \rightarrow not correlated with active in star formation
 - \rightarrow progenitors not short-lived: low/intermediate mass stars
- faster ejecta, brighter events \rightarrow progenitors less massive
- \bullet regularity of light curves \rightarrow fairly uniform path to formation

putting it all together... Q: what do you think?

Type Ia Supernovae: White Dwarf Explosions

all viable scenarios invoke:

★ binary system

 \star a *white dwarf*, usually a CO dwarf

What's a CO white dwarf?

 \rightarrow end-product of intermediate-mass star

after main seq:

- 1. H shell burn \rightarrow RGB
- 2. He ignition: degenerate \rightarrow explosive: *helium flash*
- 3. core expands, burns He \rightarrow C+O
- $_{\odot}$ Q: and what happens when core is CO? Hint: it depends!

4(a). if $M \lesssim 4M_{\odot}$, CO core supported by e^- degeneracy pressure never contracts, remains as CO white dwarf 4(b). if $M \sim 4 - 8M_{\odot}$, shell He burning increases CO core mass until $M_{\text{core}} > M_{\text{Chandra}}$: core contracts, burn to O, Ne, Mg results in ONeMg white dwarf

thus: CO white dwarfs are outcomes of $\sim 1-4M_{\odot}$ evolution but lower-mass stars are the most abundant

 \rightarrow CO white dwarfs are the most common type

Q: so what if WD has binary companion which donates mass?

SN Ia: Thermonuclear Explosions

if WD in close binary/merger:

- companion donates mass
- when $M_{WD} > M_{Chandra}$: star contracts ignites degenerate C burning ("carbon flash")

runaway nucleosynthesis \rightarrow WD detonates heated \rightarrow achieve *nuclear statistical equilibrium Q: which will make what?*

energy release:

11

 ¹²C→ ⁵⁶Fe burning gives Q = B₅₆/56 - B₁₂/12 = 0.86 MeV per nucleon if inner 50% of M_{Chandra} is carbon, then release E_{nuke} ~ QM_{core}/m_u ~ 1.6 × 10⁵¹ erg = 0.6 foe
 compare to core gravitational binding:

for uniform sphere $E_{grav} = 3/5 \ GM_{core}^2/R \sim 10^{50} \ erg = 0.1$ foe Q: and so?

Type Ia Explosion Physics

thermonuclear energy powers explosion

not gravitational energy!

www: Type Ia simulation movie, Chicago group

white dwarf entirely unbound, disrupted, ejected

- Type Ia should leave *no compact remnant*
- all nucleosynthesis products ejected

Neutrinos?

• expect some relatively low-energy \sim 3 MeV emission from β decays, but a "fizzle" compared to core-collapse

12

Type Ia Supernova Nucleosynthesis

in thermonuke explosion:

all nucleosynthesis is from explosive burning

(in contrast to core-collapse case)

most of star "cooked" to $T\sim 1 {\rm MeV}$

driven to nuclear statistical equilibrium

- favors most tightly-bound elements: *iron peak*
- yields peak at $m_{\rm Ia,ej}({}^{56}{\rm Fe}) \sim 0.5 M_{\odot}$ ~ 5 – 10 times more than typical core-collapse Fe yields also large amounts of Cr–Ni
- but traces of Mg Si, S, Ca observed: not all star in NSE
- $\[tilde]{tilde}{tilde}$ requires some burning occur at lower T: "deflagration-detonation" transition

Type Ia Supernovae: Whodunit?

general agreement: SN Ia require white dwarf & companion good news: binary systems common bad news: *still* no consensus, and no direct evidence, on nature of binary companion

single degenerate

binary companion is a star in giant phase mass lost to winds and/or Roche lobe overflow companion survives explosion

double degenerate

binary companion is another white dwarf

¹merge after inspiral due to gravitational radiation