Astro 596/496 NPA Lecture 35 Nov. 16, 2009

Announcements:

• Preflight 6 was due at noon today last preflight! party like it's 1999!

Last time: Type Ia Supernovae

- *Q:* how are they similar to core-collapse supernovae?
- Q: how are they different?

Q: what are the main theoretical uncertainties about Type Ia progenitors?

 \vdash

Type Ia Supernovae: Whodunit?

general agreement: SN Ia require white dwarf & companion good news: binary systems common bad news: *still* no consensus, and no direct evidence, on nature of binary companion

single degenerate

binary companion is a star in giant phase mass lost to winds and/or Roche lobe overflow companion survives explosion

double degenerate

binary companion is another white dwarf
N merge after inspiral due to gravitational radiation

Problems with either!

Single-Degenerate:

- explosion should evaporate some of companion atmosphere why no H seen in supernova spectrum?
- No success (yet?) in direct searches for runaway companions in Type Ia SN remnants

 \rightarrow limits imply companion must be dim \rightarrow low mass but then must be very close binary to transfer mass so why no H in spectrum?

Double-Degenerate:

ω

- WD-WD inspiral times long unless very close binary no WD binaries seen with $\tau_{inspiral} < t_0$...but could this be a selection effect?
- WD-WD merger could lead to neutron star formation "accretion induced collapse," inward burning

SN Ia Population Studies: Everybody Does It?

SN Ia population constraints: (Maoz 2008) observed SNIa rate $\approx 15\%$ all $3 - 8M_{\odot}$ star death rate

but SNIa candidates

- must (?) be in binaries ... and can't double-count: \leq 1 SN Ia per binary! and so \leq 0.5 SN Ia/star,
- and must have total mass $m_{tot} > M_{Chandra}$,
- and must have short periods = close orbits

Relevant comparison:

SNIa ~ 100% $3 - 8M_{\odot}$ close binaries > $M_{Chandra}$!

[▶] Type Ia path must be dominant $3 - 8M_{\odot}$ endpoint! → strains all models!

LISA and the Coming Binary White Dwarf Revolution

close WD-WD binaries have significant energy loss

by gravitational radiation

signal frequency \sim orbit frequency

close binaries \rightarrow short period $P \sim$ minutes-hours

- \Rightarrow gravity wave frequencies $\nu_{\rm gw} \sim P^{-1} \sim 10^{-4} 10^{-2}$ Hz
- \Rightarrow out of ground-based (LIGO) range, but detectable in space by *LISA* (launch in 10 yrs?)

LISA WD-WD binary forecast (R. Webbink et al)

 \bullet \sim 3600 close WD-WD binaries seen

СЛ

- parameters (mass, binary orbits) found for each
- WD-WD population statistics measured
 - \Rightarrow check feasibility of WD-WD \rightarrow SN Ia !
- near-merger events should produce strongest signal
- can forecast next merger to within $\sim\pm1$ year! SN Ia "early warning system" ?!

Supernovae and Abundance Signatures

Core collapse: α -elements (¹⁶O, ¹²C, ²⁰Ne, ²⁴Mg, ²⁸Si, ²²S) Fe group (Ca, Fe, Ni)

Thermonuke: dominated by Fe group

Composition of an astrophysical object gives clue to supernova contributors \rightarrow past evolution

 \rightarrow abundances encode nucleosynthesis history

 $_{\circ}$ Q: which occurs first in the universe? testable consequences?

Evolution of Supernova Nucleosynthesis

Evolution timescales very different:

- SN II: massive stars, short lived
- SN Ia: need WD \rightarrow intermediate mass \rightarrow longer lived \Rightarrow time ordering: first SN II, then later SN Ia

Solar system: mix of both www: Solar Abundances Halo stars: old \rightarrow SN II only and so expect

$$\left(\frac{O}{Fe}\right)_{\odot} = \frac{O_{II}}{Fe_{II} + Fe_{Ia}}$$
(1)
$$\left(\frac{O}{Fe}\right)_{halo\star} = \frac{O_{II}}{Fe_{II}} > \left(\frac{O}{Fe}\right)_{\odot}$$
(2)

Observed!

also expect $(O/Si)_{\odot} \simeq (O/Si)_{II}$ and so $(O/Si)_{halo} \simeq (O/Si)_{\odot}$ Observed!

Beyond the Iron Peak

www: Solar Abundances

if all heavy elements made only in

burning to nuclear statistical equilibrium

then should follow Fe peak, fall dramatically at high A

 \rightarrow would have much less of the very heavy elements

How to synthesize nuclei with A > iron peak?

- Coulomb barrier $\propto Z^2$ prohibitive
- fusion reaction *not* exothermic

Yet silver, gold, lead, uranium, ... all exist! \rightarrow nature has found a way

ဖ

Q: Suggestions?

Solution: neutrons

- no Coulomb barrier
- capture reactions occur even at small thermal speeds

Today: nuclear physics of n capture processes Then: astrophysics

Neutron Capture Processes

To see basic physics:

- (1) "let there be neutrons"
- (2) assume a heavy "seed" nucleus (e.g., 56 Fe)
- (3) ignore charged particle rxns (Coulomb suppressed)

Q: if add n to seeds, expect...?
www: chart of nuclides

Neutron capture physics set by competition

- neutron capture $n + (A, Z) \rightarrow (A + 1, Z) + \gamma$
- β decay $(A, Z) \rightarrow (A, Z + 1) + e^- + \overline{\nu}_e$

Two regimes (BBFH 1957; Cameron 1957): capture rate \gg decay rate \Rightarrow rapid capture: *r*-process decay rate \gg capture rate \rightarrow slow capture: *S*-process

Detective story:

- do these limiting cases occur? (Yes!)
- what are astrophysical sites?

12

n Capture Rates

n-capture cross sections:

typically, $\sigma \propto 1/v$

- enhanced at low energies!
- $\sigma v = \langle \sigma v \rangle = const \rightarrow T\text{-indep!}$
- fails for magic nuclei: tightly bound \rightarrow small σ

Implications?