Astro 596/496 NPA Lecture 37 Nov. 20, 2009

Announcements:

• Problem Set 6 due Dec 2 (Wed after break)

Last time: *s*-process

physics: slow neutron capture $\Gamma_{n,\gamma} \ll \Gamma_{\beta}$

i.e., $au_{n,\gamma} \gg au_eta$

1

origin: thermal pulses, dredge-up events in AGB stars evidence: $N_A \sigma_{nA} \sim const$ good rough fit to solar abundances but: *s*-pattern does not explain all abundances beyond Fe \rightarrow need *r*-process!

Q: basic physics? www: chart of nuclides

The *r*-Process: Basic Physics

Sketch:

N

- Rapidly add n to seeds (e.g., ⁵⁶Fe)
- populate *n*-rich nuclei far from β -stability
- \bullet later: decay back to $\beta\mbox{-stable}$ isotopes

Transp: r-process path

```
In general, heavy nuclei can have both
    r-process and s-process contributions.
But if have multiple stable states
    at fixed A, then bifurcates:
    the higher N state gets r-process
    the lower N is "shielded": s-only
www: s-process path
    ⇒ very useful in sorting out processes
```

The *r*-Process: In More Detail

1. Increase A at fixed Z **Transp:** r-process path reach $(n, \gamma) \leftrightarrow (\gamma, n)$ equilibrium Saha: $n_{Z,A+1}/n_{Z,A} \sim n_n (mT)^{-3/2} e^{S_n(Z,A+1)/T}$ with n separation energy $S_n(Z, A + 1) = m(Z, A + 1) - m(Z, A) - m_n$

- distribution in A fixed by n_n , T
- peak A_{\max} when $n_{Z,A+1} \simeq n_{Z,A}$ for *r*-process conditions, occurs at $S_n \sim 2$ MeV
- "waiting point" till A_{\max} can β -decay
- 2. Increase Z at fixed A

Put $n_Z = \sum_A n_{Z,A}$ $dn_Z/dt \simeq -\lambda_{\beta,Z} n_Z + \lambda_{\beta,Z+1} n_{Z+1}$ in equilibrium, $dn_Z/dt = 0$:

ω

$$n_{Z+1}/n_Z = \lambda_{\beta,Z}/\lambda_{\beta,Z+1} = \tau_{\beta,Z+1}/\tau_{\beta,Z}$$
(1)

Result:

During *r*-process: populate nuclides far from stability $(S_n \sim 2 \text{ MeV})$

Pileups around long $\tau_{\beta} \Rightarrow$ magic N

Transp: r-process path

After *r*-process: β decay to stability Magic $N \rightarrow$ nonmagic, lower A: *r*-peaks lie below *s*-peaks

Characteristic Scales for the r-Process

Timescale

must overcome neutron-magic β -bottleneck $\Rightarrow t \sim \tau_{max} \sim 1$ s

Temperature

need $T \sim$ neutron sep. energy $\sim MeV \Rightarrow T \gtrsim 10^9 \text{ K}$

Free Neutron Density

need $\tau_{n\gamma} < \tau_{\beta}$ for each of ~ 100 *r*-process path nuclides: $t/100 \gtrsim \tau_{n\gamma} \sim n_n \sigma v_T \Rightarrow n_n \gtrsim 10^{20} \text{ cm}^{-3}$

Neutron-to-Seed Ratio

start from seeds with $A \sim 56 - 80$ to make actinides (e.g., ²³⁸U) \Rightarrow neutron/seed ~ 100

СЛ

Q: so where might these conditions occur?

Candidate Astrophysical Sites for the r-Process

Core Collapse Supernovae

old ideas: outer layers of NS (near mass cut)? helium-burning shell: n from $\neq 22(\alpha, n)^{25}$ Mg seeds are pre-existing ⁵⁶Fe

new ideas:

σ

- in hot propto-NS, $\nu {\rm s}$ drive baryonic "wind" near mass cut rich in $n,~\alpha$

"high-entropy bubble" high n/seed \rightarrow can get r-process

 in *collapsar*, accretion disk also drives ν wind which could produce n and r-process
 ejected in GRB and/or accompanying Type Ic explosion?
 if true: r-process origin in long/soft GRB

Neutron Star – Neutron Star Mergers

neutrons are abundant! if eject: cold NS matter expands, heats \rightarrow *r*-process mergers rarer than SN: need larger *r*-production per event

if true: *r*-process origin in short/hard GRB

New Twist: r-Process in Halo Stars

CS 22982-052

• halo star, [Fe/H] = -3.1

 \Rightarrow expected to sample few (1?) nuke events no *s*-process sources yet *Q*: *why*?

• Although "metal" poor, very rich in *r*-process:

$$\left(\frac{\mathsf{Eu}}{\mathsf{Fe}}\right)_{\star} = \frac{50}{50} \left(\frac{\mathsf{Eu}}{\mathsf{Fe}}\right)_{\odot}$$
(2)

"heavy r" (≥Ba) in solar ratios to each other
 e.g., (Eu/Pb)_{*} = (Eu/Pb)_⊙
 and (Pb/Ir)_{*} = (Pb/Ir)_⊙, etc. …
 Transp: abundance pattern

00

Q: what do these results imply?

r-Process Universality?

r-process-enriched halo stars:

same *r*-process ratios as in solar system

"one size fits all" ?! amazing!

- this star: a few, maybe ONE nuke event
- the Sun: many (1000?) events, averaged ...but *r*-process ratios are the same!

 \Rightarrow Universal *r*-process?

"light r' (Ge–Zr) anomalous
i.e., non-solar

ဖ

r-Rich Halo Stars: Implications

1. supersolar *r*/Fe:

not all SN produce both *r*-pro and Fe *r*-site very short-lived

- heavy-r in solar ratios:
 universal (heavy) r-process site
- 3. nonsolar light-*r* ratios: multiple production mechanisms?

Crown Jewels: Uranium and Thorium

- U and Th:
- *r*-process only
- unstable:

$$\tau(Th) = \tau(^{232}Th) = 20.2 \text{ Gyr}$$

 $\tau(U) = \tau(^{238}U) = 6.446 \text{ Gyr}$

Thorium found in many halo stars

Uranium found in \sim 2 halo stars

Transp: spectra and abundance patterns

Can do nucleocosmochronology! From observed and initial U,Th $t \sim 12 \pm 3$ Gyr

11

Possible fly in ointment:

most r-ratios in solar pattern

but: heaviest stable elements (Os, Ir, Pb) not

 \Rightarrow universal *r*-process only approximate?