Astro 596/496 NPA Lecture 40 Dec. 4, 2009

Announcements:

• Final Problem Set posted today

Last time: cosmic rays—acceleration and propagation *Q: propagation: affect on abundances—propagated vs source? Q: loss mechanisms?*

Q: acceleration mechanism? acceleration site(s)?

Cosmic-Ray Fossils: Lithium, Beryllium, and Boron

Lithium, Beryllium, and Boron: Orphans of Nucleosynthesis

- LiBeB weakly bound \rightarrow destroyed in stars
- ⁶LiBeB not made in BBN

But LiBeB exist! must be made somewhere!

Hint: observed cosmic-rays highly enriched in LiBeB

www: cosmic-ray vs solar abundances

Q: why are CRs rich in LiBeB?

 $_{N}$ Q: how does this point to a LiBeB production mechanism?

Lithium, Beryllium, and Boron: Cosmic-Ray Production

Observed cosmic rays high in LiBeB

 observed CRs have propagated from source in flight, *inevitably* interactions with interstellar gas, .eg. spallation makes all of LiBeB

$${}^{16}\text{O}_{cr} + p_{ism} \rightarrow {}^{6}\text{Li} + \cdots$$
 (1)

$$\rightarrow {}^{9}\text{Be} + \cdots$$
 (2)

$$\rightarrow {}^{10,11}\mathsf{B} + \cdots \qquad (3)$$

fusion makes lithium isotopes only *Q*: *why*?

$$\alpha_{\rm cr} + \alpha_{\rm ism} \rightarrow {}^{6,7}{\rm Li} + \cdots$$

- after correcting for propagation, *no*/tiny LiBeB at source
- ^{ω} But from nucleosynthesis point of view: \rightarrow this is a *gauranteed* method of LiBeB production!

In more detail: note that LiBeB nuclides in CR have two fates

- (1) escape
- (2) energy loss, stopping

relative probability depends on kinematics $\vec{O} + p \rightarrow fast LiBeB, \sim 80\%$ escape $\vec{p} + O \rightarrow slow LiBeB, \sim 90\%$ stop

stopped LiBeB:

- accumulate in ISM
- gauranteed source of LiBeB nucleosynthesis
- spallation production dominated by $\vec{p}, \vec{\alpha} + C, N, O$

 $_{P}$ Q: but we haven't proven this explains solar LiBeB because...?

Cosmic-Ray Nucleosynthesis

gauranteed to make but *some* LiBeB ...but do cosmic rays make *enough*?

consider $p + O \rightarrow Be + \cdots$ production rate:

$$\dot{n}_{\mathsf{Be}} \simeq n_{\mathsf{O}} \sigma_{p\mathsf{O}} \rightarrow \mathsf{Be}} \Phi_p$$

order-of-magnitude estimate:

$$\Rightarrow \left(\frac{\mathsf{Be}}{\mathsf{H}}\right)_{\mathsf{cr}} \sim \left(\frac{\mathsf{O}}{\mathsf{H}}\right)_{\odot} \sigma_{p\mathsf{O}\to\mathsf{Be}} \Phi_p \Delta t$$
$$\sim \frac{1}{2} (\mathsf{Be}/\mathsf{H})_{\odot} \text{ (honest numbers!)}$$

 $□ \Rightarrow can produce solar Be (and B, ⁶Li)$ cosmic-rays necessary and sufficient for LiBeB nuke!

Note:

- ⁶Li, ⁹Be, ¹⁰B *only* made from CR
- \Rightarrow "CR dosimeters":
- measure CR "radiation dose" in ISM
- record CR history!

Thus LiBeB nucleosynthesis:

- occurs in interstellar space
- shows that cosmic rays have always been in the Galaxy
- is powered ultimately by CR sources—supernovae?

Cosmic-Ray Fossils: Gamma-Rays

History

~

- early 1970's: Orbiting Solar Observatory (OSO-3) discovery of high-energy > 100 MeV photons
 www: OSO-3 sky, Kraushaar et al 1972
- mid 1970's: improved sensitivity resolution www: SAS-2 sky, Fichtel et al
- 1990's: EGRET expt on Compton γ-Ray Observatory
 www: EGRET sky
- 11 June 2007: *Fermi* Gamma-Ray Observatory launch

Lesson: MeV–GeV Gamma-ray astronomy is challenging!

- poor angular resolution Fermi individual photons localized to $\sim 0.1^\circ - 3^\circ$ better for higher energies
- small photon counts OSO-3: 627 photons total! $EGRET \sim 10^{6}/yr \rightarrow cost \sim few \ photon!$ $Fermi \sim 10^{8}/yr \rightarrow pennies/photon - better value!$

But still, a striking picture emerges

00

www: Fermi Gamma-Ray Sky > 100 MeV--year one

Q: what the the main features of the gamma-ray sky? Q: what does this suggest about sources?

The Gamma-Ray Sky

Point Sources

- in Galactic plane, but cover entire sky
- many of these are *variable*
 - \Rightarrow at low latitudes, associated with pulsars
 - \Rightarrow at high latitudes, associated with active galaxies

Diffuse Emission

- most intense along Galactic plane
- rises smoothly to peak at Galactic center
- drops off at high Galactic latitude, but nonzero even at poles
- no obvious spheroidal component to Galactic emission

9

Diffuse Emission: Implications

- * Galactic sources for gammas, lie in plane
- ★ Galactic emission strongest near center
- \star *extragalactic* emission exists
- * but no strong signal with Galactic halo-like morphology
- Q: what might be sources of Galactic diffuse emission?
- Q: extragalactic emission?

Diffuse Gamma-Ray Sources

Galactic Source Candidates

- photons from cosmic-ray propagation & interaction in ISM How? What are mechanisms?
 Hint: What are CR components, how can they interact?
 concentrated in plane – where the targets are a truly diffuse component
- photons from *unresolved* Galactic point sources pulsars, microquasars, supernova remnants...
- photons from dark matter annihilation ...but should give spheroidal signal, not seen

Extragalactic Source Candidates

 unresolved point sources galaxies like Milky Way faint active galaxies

11

 truly diffuse emission cosmic rays from structure formation

Gamma-Ray Production Mechanisms

- hadronic: pion production and decay $p_{CR} + p_{ISM} \rightarrow p + p + \pi^0$, then $\pi^0 \rightarrow \gamma\gamma$ in pion rest frame, $E_{\gamma} = m_{\pi}/2 \simeq 67.5$ MeV but real pions decay in flight *Q: resulting spectrum?*
- leptonic: bremsstrahlung = "breaking/deceleration radiation" e_{CR} + Z_{nuc}→e' + Z' Z is ISM ion (mostly p) spectrum: featureless for relativistic e steeper than primary e spectrum
- leptonic: inverse Compton "upscattering" $e_{\rm CR} + \gamma_{\rm bgnd} \rightarrow e' + \gamma'$ who is $\gamma_{\rm bgnd}$?
- ★ starlight (IR, optical)★ CMB (microwave)