Astro 596/496 NPA Lecture 41 Dec. 7, 2009

Announcements:

 \vdash

- Final Problem Set posted, due next Monday at 5pm open book, open notes, open web but please do not collaborate
- all homework solutions posted by end of today

Last time: signatures of cosmic-ray interactions *Q: LiBeB–why unusual? how do cosmic rays make them? Q: gamma rays–what do we learn from the* Fermi *sky? Q: what causes emission in the Galactic plane? Q: what theoretical tools needed to describe gamma-ray sky?*

Gamma-Ray Radiation Transfer

Gamma-ray number intensity (surface brightness) $I_{\gamma}(E) = dN/dA \, dt \, d\Omega \, dE$

$$\frac{d}{ds}I_{\gamma} = -n\sigma I_{\gamma} + \frac{q_{\gamma}}{4\pi} \tag{1}$$

source $q_{\gamma} = dN_{\text{inj}}/dV \, dt \, dE$ (assume isotropic) line-of-sight path ds = cdt

matter-radiation interaction: for $E_{\gamma} \gtrsim 100$ MeV, $\gamma \rightarrow e^+e^-$ dominates $\sigma \simeq const \simeq 23$ mb \Rightarrow mean free path in ISM $\ell_{mfp} \sim 14$ Mpc (1 cm⁻³/n)

Ν

Q: Which means?

gamma-ray $\ell_{mfp}^{ism} \gg ISM$ size: Galaxy is transparent to γ -rays \Rightarrow radiation transfer simplifies to $dI_{\gamma}/ds \simeq q_{\gamma}/4\pi$

integrate over line of sight path s:

$$I_{\gamma}(E) = \int_{\log} ds \; \frac{q_{\gamma}(E)}{4\pi} \tag{2}$$

source function: $q_{\gamma}(E_{\gamma}) = \Gamma(E_{\gamma}) n_{\mathsf{H}}$ \Rightarrow each line of sight has $I_{\gamma}(E) = \Gamma(E)N_{\mathsf{H}}$

- energy dependence: $\Gamma = \int_{E_{\gamma}}^{\infty} dE \ \sigma(E, E_{\gamma}) \ \phi_{cr}(E)$ the γ production rate per H atom
- spatial dependence: $N_{\rm H} = \int_{\rm los} ds \ n$
- ω total H column density along line of sight

Diffuse Gamma-Rays Observed

www: $\gamma\text{-ray sky} > 100$ MeV

 γ -ray sky > 100 MeV dominated by diffuse emission from disk cosmic-ray + interstellar-medium interactions

Galactic gamma-rays as probes

- \star given cosmic-ray spatial distribution: probe of Galactic H
- \star given H spatial distribution: probe of Galactic cosmic rays
- ★ spectrum: encodes info on source mechanism(s) $Fermi \rightarrow$ hadronic interactions dominate emission from plane
- ★ angular distribution: emerging powerful tool to identify/discriminate sources

4

Diffuse Galactic γ **-Rays: Models**

Theory: model distributions of projectiles: Galactic CRs targets: starlight, gas, mag field

good news:

can fit spatial distribution fairly well and now can also fit energy spectrum

bad(?) news:

no evidence yet (?) for exotica, e.g., dark matter annihilation

Extragalactic Gamma-Rays

Gamma-rays seen even from Galactic poles At some level there must be extragalactic gammas

Sources for the γ -ray background? two guaranteed = unresolved counterparts of esolved sources

(a) Blazars: AGNs seen in high-E γ s www: unification cartoon EGRE resolved ~ 100; new sources found by *Fermi* unresolved \rightarrow some (most?) of background

σ

(b) star-forming galaxies: CR-ISM γ s as in MW a few local/luminous galaxies now *observed* by *Fermi* in past: star-formation higher, more gas (fewer stars) in ISM \rightarrow galaxies γ -ray bright, significant contribution to background \Rightarrow *Fermi* preliminary results encouraging! Cosmic Ray Finale:

ATMOSPHERIC NEUTRINOS

Atmospheric Neutrinos: Theory

cosmic-ray interactions in atmosphere produce neutrinos:

initial interactions at "top" of atmosphere, $\sim 15-20$ km

$$p_{\rm cr} + {}^{14}{\rm N}_{\rm atm} \rightarrow \pi^+ + \cdots \\ \pi^+ \rightarrow \mu^+ + \nu_{\mu} \\ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$$

Clear prediction for flavor ratio

$$\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}} \simeq 2 \tag{3}$$

Q: but what about decays of atmospheric π^- ?

00

Absolute ν flux, for $\nu \in (\bar{\nu}_{\mu}), (\bar{\nu}_{e})$

neutrino production

$$\frac{d\phi_{\nu}}{ds} \simeq n_{\text{atm}} \sigma(p + \text{atm} \rightarrow \pi) \phi_p$$

but cosmic rays lost to these and other interactions

$$\frac{d\phi_p}{ds} \simeq - n_{\text{atm}} \sigma(p + \text{atm} \rightarrow \text{inelastic}) \phi_p$$

 \rightarrow cosmic-ray mean free path $\ell_{mfp} = 1/n_{atm}\sigma_{p,inel}$

Integrate neutrino production over $\Delta s \simeq \ell_{mfp}$:

$$\phi_{\nu} \simeq (n_{\text{atm}} \sigma_{\pi} \Delta s) \phi_p \qquad (4)$$

$$= \frac{\sigma_{p+\text{air}} \rightarrow \pi}{\sigma_{p+\text{air}} \rightarrow \text{inel}} \phi_p \simeq 0.05 \ \phi_p \qquad (5)$$

9

so expect $\Phi_{\nu}(> 1 \text{ GeV}) \sim 0.05 \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ $\Rightarrow \text{ atm } \nu \text{ flux} \ll \text{ solar } \nu \text{ flux, but much higher } E$

Atmospheric Neutrinos: Angular Dependence

to good approx:

- CR flux at top of atm is isotropic
- atm. is spherical

Without oscillations, predict:

- *Q*: upgoing vs downgoing flux-for each flavor?
- *Q*: flavor ratio–upgoing vs downgoing?

Atmospheric Neutrinos: Angular Dependence

We view neutrino sources from inside earth i.e., inside sphere with isotropic ν sources observed from off-center position

observe oso in angular area Ω :

- sources at distance r cover area $A = \Omega r^2$
- but flux drops as $\Phi \propto 1/r^2$
- → intensity = flux in a given detection = surface brightness $I \propto \Phi/\Omega = const \Rightarrow isotropic flux$

this restates Newton's "iron sphere" theorem

In particular, without oscillations, predict:

upgoing ν flux = downgoing ν flux

$$\exists i.e., \ \phi(\cos\theta_z = -1) = \phi(\cos\theta_z = +1)$$

 \Rightarrow up/down asymmetry is evidence for new ν physics

Super-K measures both ν_e -like and ν_μ -like events

 u_{μ}/ν_{e} quoted in terms of "double ratio"

$$R \equiv \frac{(\nu_{\mu}/\nu_{e})_{\text{data}}}{(\nu_{\mu}/\nu_{e})_{\text{MC}}}$$
(6)

where MC=theory (Monte Carlo) prediction Standard Model (no ν osc'n): R = 1

Super-K finds:

$$R = 0.658 \pm 0.016 \pm 0.035 \tag{7}$$

 \Rightarrow new ν physics afoot!

 $\frac{1}{2}$ Who's to blame?

Super-K Up/Down (A)symmetries

www: Super-K ν angular distributions flux up \simeq flux down angular distribution predictions match theory (w/o oscillations) No oscillations of ν_e ! (at these energies...)

 u_{μ} -like

flux up \neq flux down! angular distributions \neq theory: deficit of upward ν s, increases with L/E_{ν} \Rightarrow oscillation! Not into ν_e , so $\Rightarrow \nu_{\mu} - \nu_{\tau}$ oscillation!

13

Q: what does this imply about oscillation length?

no oscillation for downgoing: $L \sim h_{atm} \sim 10 - 15$ km substantial oscillation for upgoing: $L \sim 2R_{\oplus}$

for 2-species oscillations in vacuum, survival

$$P(\nu_i \rightarrow \nu_i) = 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m_{eV^2}^2 L_{km}}{2E_{GeV}}\right)$$

to see an effect when $L \sim 2R_{\oplus}$ and $E \sim E_{\rm Cr}$ GeV $\Rightarrow \Delta m^2 \sim 4E_{\rm Cr}\hbar c/R_{\oplus} \sim 10^{-3} {\rm eV}^2$

best fit: $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and within ability to measure, $\sin^2 2\theta = 1$: maximal mixing!

14

Verification

Experimental verification:

make ν_{μ} beam at accelerator (from decaying π^{\pm}) aim at underground ν detector

- look for u_{μ} disappearance
- test L, E dependence

Notation: solar $\nu s \rightarrow masses m_1, m_2$ $\rightarrow measures \Delta m_{12}^2 = m_2^2 - m_1^2 \text{ and } \sin^2 2\theta_{12}$ atmospheric νs : masses $m_2, m_3 \Rightarrow \Delta m_{23}^2$ and $\sin^2 2\theta_{23}$

K2K, Japan www: K2K KEK accelerator \rightarrow Super-K: $L \sim 250$ km, $E_{\nu} \sim 1.3$ GeV good agreement with osc'n solution!

MINOS (Fermilab \rightarrow Soudan, Minn.), USA www: MINOS

•
$$\Delta m^2 = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$$

• $\sin^2 2\theta > 0.85$

<mark>1</mark>5

Neutrino Masses: Current Status

Tie together ν physics we have covered:

• solar
$$\nu$$
 problem: $\nu_e - \nu_x$ oscillation:
 $x = \mu, \tau$ or combo (?)
favored LMA solution:
 $\Delta m_{12}^2 = m_2^2 - m_1^2 = (7.59 \pm 0.20) \times 10^{-5} \text{ eV}^2$

• atmospheric ν problem: $\nu_{\mu} - \nu_{\tau}$ oscillation: best-fit: $\Delta m_{23}^2 = m_3^2 - m_2^2 = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$

5 So what does this say about the m_i ?

Neutrino Masses

will show in Final PS that:

None of m_i fixed, but :

- all mass-square differences Δm^2 fixed
- beta decay experiments add info ν_e mass components

Cosmological implications:

- oscillations alone set *lower limit* to Ω_{ν}
- oscillations+ β decays sets upper limit to Ω_{ν}

In particular, upper limit gives: $\Omega_{\nu} < \Omega_{\text{matter}}$

 \Rightarrow Last question on Final:

 $\exists Q$: why is this result centrally important to cosmology and particle physics?