Astro 210 Lecture 11 Sept 17, 2010

Announcements

- HW3 due now
- HW2 Q4 (10 bonus points) available till Oct 1
- good news: no HW for next Friday
- bad news: Hour Exam 1 next Friday

www: info online

Last time:

light = electromagnetic radiation

- color: wavelength λ , freq f
- • speed $\lambda f = c = \text{constant}$
 - particle properties: photons γ : $E_{\gamma} = hf = hc/\lambda$

Spectroscopy

key property of light: **Flux:** energy flow per unit area per unit time *diagram:* light flow, area A, dE = FAdt, $F = 1/A \ dE/dt$ intuitively: "apparent brightness"

spectrum: flux distribution vs λ

Demo: use gratings Q: what does white light spectrum look like?

- *Q*: what does laser pointer spectrum look like?
- Q: what's the spectrum of a neon light?

Ν

iClicker Poll: Space Heater Spectrum

What's the spectrum of a hot, glowing metal (mostly iron)?

- A a single color (wavelength)
- **B** a set of several sharply defined colors (wavelengths/ "lines")
- C a continuous band of color from red to orange
- D a continuous band of color from red to green

a continuous band of color from red to violet

can classify three basic kinds of spectra: Kirchoff's Rules

diagram: hot solid, cooler gas, lines of sight

1. A hot and opaque solid, liquid or dense gas emits a continuous spectrum (A) diagram: continuous spectrum: $F vs \lambda$

2. A hot low-density (transparent) gas produces emission line spectrum note: pattern of lines specific to element diagram: emission line spectrum: $F vs \lambda$

4

3. Continuous radiation viewed though cooler gas produces an absorption line spectrum *label C on diagram diagram: absorptions line spectrum* note: the lines absorbed have same color/wavelength as the lines in emission line spectrum: $F \vee s \lambda$

these effects are godsends for astrophysics! *Q: why?*

Observer's Scorecard

You can see an awful lot, just by looking. -- Asrophysicist Yogi Berra

can use emission/absorption lines to inventory kinds of elements in an astronomical source

light spectrum gives atom "fingerprint" or "barcode"

spectrum \rightarrow composition

Example: The Sun

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows *Q: what kind of spectrum?* www: Sun spectrum amount absorbed in each line \rightarrow amount of atoms \rightarrow composition of Sun; works for other stars too!

Note: as yet, don't know where lines comes from who assigns cosmic barcodes?

for this, need to understand how light interacts with matter

Matter

 ∞

```
atoms come in elements
92 natural, 23+ artificial
www: periodic table
determined by nuclear charge Z = \# protons
e.g., hydrogen H: Z = 1
uranium U: Z = 92
```

same element (same # p) can have different # neutrons \rightarrow "isotopes" examples: most H is ¹H = 1p, 0n but $\sim 10^{-4}$ of H is deuterium ²H = 1p, 1n

most U is 238 U = 92p, 146n

Q

atom net charge fixed by # electrons # $e = # p \rightarrow$ neutral # $e = # p - 1 \rightarrow$ singly ionized

Note: all p, n, e are absolutely identical this turns out to be crucial for the understanding of matter in a quantum mechanical way

Atoms & Spectra

how are spectral lines ("barcode") related to atom structure?

Balmer hydrogen gas \rightarrow emission line spect. (visible λ) found empirical pattern to lines

$$\lambda = 3.65 \times 10^{-7} \frac{n^2}{n^2 - 4} \text{ m} \quad n \text{ integer } \ge 3$$
 (1)

(1) only these lines seen and no others(2) simple mathematical structure cries out for explanation!

try it! for n = 3: $\lambda_{n=3} = 3.65 \times 10^{-7} \frac{9}{9-4} \text{m} = 656 \text{nm}$ *Q: what color is this?* www: EM spectrum $\stackrel{\smile}{\to} Demo$: H discharge tube www: Sun spectrum; H $\alpha \rightarrow$ the Sun contains hydrogen!