> Astro 210
> Lecture 12
> Sept 20,2010

Announcements

- HW2 Q4 (10 bonus points) available till Oct 1
- Hour Exam 1 this Friday www: info online
- Planetarium shows start tonight - optional, 10 bonus points online: info and registration download \& bring question sheet; due Oct 1

Last time: Kirchoff-light, matter, and spectra

- look at hot, opaque source, no intervening material ...and see?
- look at hot, low-density gas ...and see?
- look at cool gas in front of hot opaque source ...and see?
these effects are godsends for astrophysics! Q: why?

Continuous Spectra and Blackbody Radiation

hot objects (e.g., stove burner) glow

- radiates! (Kirchoff)
- hotter \rightarrow brigher, color change
- continuous spectrum
useful* to define an ideal substance:
a perfect absorber of light: "blackbody"
absorbs all λ, reflects none
*a useful idealization in the same way an "ideal gas" is useful:
brings out essential physics, and a good approximation to
behavior of many real substances
blackbody absorbs radiation \rightarrow heats \rightarrow re-emits according to T
"blackbody radiation" $=$ thermal radiation
spectrum depends only on T
diagram: Flux F vs λ

Blackbody spectrum:

- $F>0$ for all λ
- higher $T \rightarrow$ higher F at all λ
- peak at $\lambda_{\max }$
- for higher T, peak at smaller $\lambda_{\max }$

Q: why is this reasonable physically? Hint-photon energy!

Wien's law

$$
\lambda_{\max }=\frac{2.9 \times 10^{-3} \mathrm{mK}}{T}
$$

where T is in Kelvin: $T(\mathrm{~K})=T\left({ }^{\circ} \mathrm{C}\right)+273$
Ex: Sun's spectrum peaks in middle of visible range:
$\lambda_{\max , \odot} \simeq 500 \mathrm{~nm}$
Surface temperature is:

$$
\begin{equation*}
T_{\odot} \approx \frac{2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}}{500 \times 10^{-9} \mathrm{~m}}=5800 \mathrm{~K} \tag{1}
\end{equation*}
$$

Observer's Scorecard

Blackbody spectrum \& Wien's law are powerful tools: get T from spectrum!

```
color }\leftrightarrow\mathrm{ temperature
```

Q: are stars all the same color? what does this imply? www: objective prism spectra
Q: compare bright stars in Orion: Betelgeuse, Aldebaran

iClicker Poll: Blackbody Radation and You

What about people \& animals?
Do people \& animals emit blackbody radiation?

A yes, but flux too faint to see

B yes, but flux is not visible to naked eye

C no, living organisms cannot behave as blackbodies

D no, our skin traps radiation inside our bodies

WWW: experiment says...

Blackbodies: Total Flux

Total flux over all $\lambda=$ sum of flux at each interval $\Delta \lambda$

$$
\begin{equation*}
F=\sigma T^{4} \quad \text { Stefan-Boltzmann Law } \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}} \quad \text { Stefan-Boltzmann constant } \tag{3}
\end{equation*}
$$

flux units: [energy per per unit area per unit time]
Ex: the Sun
total solar power output
$=$ rate per second of energy flow into space
$=$ solar "luminosity" $=L_{\odot}=3.85 \times 10^{26} \mathrm{~W}$
Q: how to calculate this?
σ
given L_{\odot} and solar radius R_{\odot}
Q:how find Sun's blackbody temperature?

Use Stefan-Boltzmann to relate Sun's surface flux
to surface temperature:

$$
\begin{align*}
F_{\odot, \text { surface }} & =\frac{L}{\text { surf. area }}=\frac{L}{4 \pi R_{\odot}^{2}}=6.3 \times 10^{7} \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \tag{4}\\
\Rightarrow T^{4} & =\frac{F}{\sigma} \tag{5}\\
\Rightarrow T & =\left(\frac{F}{\sigma}\right)^{1 / 4}=5800 \mathrm{~K} \tag{6}
\end{align*}
$$

check! this luminosity-based value agrees with earlier color-based value using Wein's law
\rightarrow good consistency check, didn't have to agree
Q: what would disagreement mean?
And finally: flag thermodynamics(?)
Wein says: blue $\rightarrow T \sim 8,000 \mathrm{~K}$

$$
\text { red } \rightarrow T \sim 3,000 \mathrm{~K}
$$

Q: why doesn't a US flag burst into flame?
why aren't blue regions twice as hot as red?

Doppler Effect

consider a moving light source

- moves at constant speed v
- emits light of wavelength λ_{em} as measured in emitter's rest frame

Each wave crest propagates spherically from emission point but emission points move, so...
Q : how does this affect observed wavelength $\lambda_{\text {obs }}$?
Q: does the effect depend on viewing angle? how or why not?
in front of emitter: wave crests "bunch up"
\rightarrow approaching objects observed at smaller wavelength \rightarrow shorter λ : "blue shift"
behind emitter: wave crests "stretched out"
\rightarrow receding objects observed at longer wavelength
\rightarrow Ionger λ : "red shift"
shift depends only on
relative motion in radial direction ("line of sight")

$$
\begin{equation*}
\frac{\lambda_{\mathrm{obs}}-\lambda_{\mathrm{em}}}{\lambda_{\mathrm{em}}}=\frac{\Delta \lambda}{\lambda}=\frac{v_{r}}{c} \tag{7}
\end{equation*}
$$

where $v_{r}>0$ means moving away

Observer's Scorecard

Doppler effect: speed $\leftrightarrow \lambda$ shift
redshifts/blueshifts \rightarrow speedometer

Q: but how does it work in practice? how do you know a line is shifted?

