Astro 210 Lecture 14 Sept 27, 2010

Announcements

- HW4 available, due Friday
- HW2 Q4 (10 bonus points) available till Friday
- Planetarium shows continue this week download & bring question sheet; due Friday

Hour Exam 1: being graded

Before exam: telescopes

- light gathering ("photon bucket")
- angular resolution Q: meaning?
 - refractors vs reflectors Q: meaning? your eye is which?

The Division of Labor in Astronomy/Astrophysics

Working astronomers/astrophysicists generally spend their time in *one* of these roles

- observer: collect, analyze, and interpret telescope data
- theorist/simulator: use physics to make models/predictions
- instrumentalist: design/build new scopes/detectors

A few very talented people do more than one of these well

ho Beware! each comes with its own biases and "culture"!

iClicker Poll: Instructor Culture of Origin

Vote your conscience!

Which of these is your instructor?

- A observer
- B theorist
- C instrumentalist

Telescopes: Detectors

Once light collected, focussed, need to detect

• naked eye – just look!

Q: Problems? other means of detection?

naked eye as photodetector

benefits:

- readily available, and cheap! problems:
- only $\sim 1\%$ of photons detected!
- can't store image
- \bullet only sensitive to small portion of EM spectrum (visible λ s)

photographic film

better!

- can collect light → see much dimmer objects
- stores image

but: efficiency still small only $\sim few\%$ of incoming γ s registered on film

Charged-Coupled Device (CCD)

like camcorder, digital camera! photons o silicon wafer o e knocked out (photoelectric effect)

- moving charges = current
- \Rightarrow CCD converts light \rightarrow electrical signal to make image: create *grid/array* of picture elements ("pixels")

great!

- ★ digital data → good for computers
- \star efficiency \rightarrow 80% of incident photons detected downside: expen\$ive, hard to make large CCD's
- ★ essentially all modern telescopes HST, Keck use CCD's
- Note: distinguished speaker Tony Tyson was early pioneer of CCD use for astronomy

Field of View

key telescope property: *field of view*

- \rightarrow angular area Ω_{fov} of celestial sphere visible in each pointing
- naked eye: see almost a full hemisphere $\Omega_{\text{fov}} \approx 2\pi \text{ steradian} = 2\pi \text{ rad}^2$
- typical modern telescopes, e.g., Hubble, Keck: $\Omega_{\text{fov}} \approx 1 \text{ arcmin} \times 1 \text{ arcmin} = 1 \text{ arcmin}^2$

iClicker Poll: Rank these from largest to smallest field of view

- A paper towel tube, drinking straw, Hubble telescope
- B paper towel tube, Hubble telescope, drinking straw,
- C Hubble telescope, paper towel tube, drinking straw

Field of View and LSST

typical modern telescopes: $\Omega_{\text{scope}} \approx 1 \text{ arcmin}^2$ drinking straw: $\Omega_{\text{straw}} \approx 1 \text{ deg}^2 = 3600 \text{ arcmin}^2 \approx 3600 \Omega_{\text{scope}}!$ \Rightarrow modern telescopes (so far!) have *tiny* fields of view!

Large Synoptic Survey Telescope www: LSST

- site: Cerro Pachón ridge, Andes mountains, Chile
- primary mirror diameter D = 8.4 m: large but not unusual
- field of view $\Omega_{\rm fov}=10~{\rm deg^2}$ enormous! requires 3.2 Gigapixel camera! first telescope to have such a large field of view
- Illinois is LSST member; Astronomy, Physics, NCSA involved

Q: why is such a large field of view useful? what does this allow?

Coming Soon-Cosmic Movie & Wallpaper

thanks to large field of view LSST can scan entire night sky in a few days! and then repeat this scan for ≈ 10 years

result: \approx 1000 deep digital images of *every point* on the southern celestial sphere, spanning 10 years!

Strategy: compare images of same region

- some things won't show any change Q: like?
 add exposures to get very deep images
 "The Sky: The Wallpaper"
- other things will show change! Q: like? subtract exposures to find & monitor changes
 - \rightarrow reveal celestial variability over timescales \sim hours to years "The Sky: The Movie"
 - ⇒ this has never been done on such a huge scale!

C

Invisible Astronomy

before 20th century: astronomy = optical astronomy visible waveband only known form of light

Now: want to take advantage of full EM spectrum \rightarrow radio, IR, UV, X-ray, γ -ray

radio: large antennas since λ very large \rightarrow need huge collecting area for angular res.

 \rightarrow arrays of antennae

www: VLA, Arecibo

X-ray: don't penetrate atmosphere

 \rightarrow must go to space

to focus: scatter at glancing angle

detectors: measure energy deposited

www: Chandra, XMM

Also: the cosmos contains more than photons! particles from space already detected

- ★ neutrinos
- cosmic rays (relativistic nuclei and electrons)
 confidently expected but only indirect evidence so far:
- gravitational radiation ("gravity waves")

The Solar System

The Solar System

www: Place in the Big Picture

Why study the Solar System?

- it's home!
- □ use present to learn about past
 - → clues for origins of Earth & Sun
- ▶ help understand origin of exoplanets: compare/contrast

Sociology: traditionally, astronomy divided into study of solar system vs extrasolar objects boundary is artificial, and somewhat loosening now...

Basic Organization www: SS lineup

Terrestrial (Earth-like) planets: smaller, rocky Mercury, Venus, Earth/Moon, Mars

Asteroid Belt: rocky debris

Jovian (Jupiter-like) planets: large, gaseous Jupiter, Saturn, Uranus, Neptune

Kuiper Belt & Oort Cloud: Icy debris

Pluto: in summer 2006, demoted to "dwarf planet" $_{\frac{1}{2}}$ \rightarrow will discuss what's behind this

Orbital dynamics show clear patterns

all planets & asteroids:

- move in same direction
- close to ecliptic plane...except Pluto
- note also that most orbits almost circular biggest exception is Pluto

But could it have been otherwise?

Q: What rules does Newton impose on bound orbits?

And note the near-circularity of orbits:

consider a planet at distance \vec{r}

and release it with velocity $ec{v}$

 \Box Q: how does orbit depend on \vec{v} magnitude, direction?

Q: how to adjust \vec{v} to get a circular orbit?