Astro 210 Lecture 15 Sept 29, 2010

Announcements

- HW4 due next time instructor office hours after class today, or by appt TA office hours 10:30-11:30 am tomorrow, or by appt
- HW2 Q4 (10 bonus points) available till Friday
- required Night Observing begins next week check online for schedule and weather info download & bring question sheet
- last optional Planetarium shows tonight & tomorrow download & bring question sheet; due Friday

Last time: began Solar System
Q: basic patterns: objects? orbits?

Patterns in Planetary Orbital Dynamics

all planets & asteroids:

- move in same direction
- close to ecliptic plane ...except Pluto
- note also that most orbits almost circular biggest exception is Pluto

But could it have been otherwise?

Q: What rules does Newton impose on bound orbits?

And note the near-circularity of orbits: consider a planet at initial distance \vec{r}_{init} and release it with velocity \vec{v}_{init}

Ν

Q: how does orbit depend on \vec{v}_{init} magnitude, direction? Q: how to adjust \vec{v} to get a circular orbit?

Newton/Kepler Motion and Initial Conditions

Given initial position \vec{r}_{init} and velocity \vec{v}_{init} trajectory (orbit) completely determined by Newton's laws

- if $v_{\text{init}} \ge v_{\text{esc}}$, orbit is *unbound* \rightarrow leaves solar system on parabolic or hyperbolic orbit
- for $v_{init} < v_{esc}$, a *bound* orbit: ellipse or circle...but which one?

```
What if bound orbit where \vec{v}_{init} has nonzero component along \vec{r}_{init}? r_{init}
Q: what kind of orbit will this be?
```

```
A ellipse (e > 0)
B circle (e = 0)
C either ellipse or circle, depending on size of v_{init} at r_{init}
```

The Miracle of Circular Orbits

• for $v_{\text{init}} < v_{\text{esc}}$, a *bound* orbit

if \vec{v}_{init} has any component along \vec{r}_{init} velocity is not purely tangential i.e., failure to meet circular requirement $\vec{v}_{circ} \perp \vec{r}$ \Rightarrow orbit must be an ellipse

but even if $\vec{v}_{init} \perp \vec{r}_{init}$, circle not guaranteed if $v_{init} \neq v_{circ} = \sqrt{GM/r_{init}}$, orbit *must* be an **ellipse**

circular orbits result only if $\vec{v}_{init} \perp \vec{r}_{init}$ and $v_{init} = v_{circ}$ exactly!

Lesson: ellipse is "generic" bound orbit

4

circular orbits are "fine tuned" and special

 \Rightarrow the near-circularity of planet orbits cries out for explanation!

Planet Properties

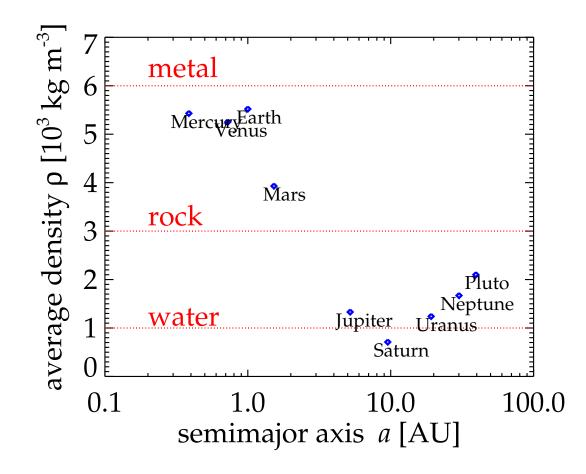
Collected here for reference; discussion follows Note trends, distinctions between terrestrial/Jovian

Property	Terrestrial	Jovian	Pluto
Members	Merc, Ven, Earth/Moon, Mars	Jup, Sat, Urn, Nep	PL
avg dist. from Sun (a)	0.4 – 1.5 AU	5.2 – 30 AU	39 AU
size R	\sim earth	4–11 earth	\sim 0.2 earth
mass	\lesssim earth	15–300 earth	\sim 0.002 earth
density	3000–5000 kg/m ³	$\sim 1000~{ m kg/m^3}$	~ 2000 kg/m 3
interior	rocks, metals	gas, ice, metal core	?
spin period	\gtrsim 1 day	\lesssim 1 day	6 days
atmosphere	none, CO_2 , O_2 , N_2	H_2 , He, H-compounds	methane CH ₄

Composition

composition = what mix of elements

note: density \leftrightarrow composition connection


denser \rightarrow richer in heavy elements e.g., water (H₂O): $\rho = 1000 \text{ kg/m}^3$ rocks (O,Si): $\rho \sim 3000 \text{ kg/m}^3$ metals (Ni,Fe): $\rho \sim 6000 \text{ kg/m}^3$

for planets, once mass M and radius R are known Q: how? can compute *average* density

$$\langle \rho \rangle = \frac{M}{V} = \frac{3M}{4\pi R^3} \tag{1}$$

σ

Average Planetary Density

- \neg Q: what trends do you notice?
 - Q: what does this teach us?
 - Q: what are limitations of this comparison?

Spin Rate

Use Doppler effect!

spinning planet: $v = 2\pi R/P$ at equator v_r w.r.t. observer:

- on edge receding: $v = -2\pi R/P \rightarrow \text{redshift}$
- on edge approaching $v = +2\pi R/P \rightarrow$ blueshift diagram: top view

total Doppler "width" of a line: $\delta\lambda/\lambda = 4\pi R/cP$ observe $\delta\lambda$, infer width

$$P = \frac{4\pi R \lambda_{\text{em}}}{c} = 243 \text{ days (Venus)}$$
(2)

 \odot

Observed spins: general trends

almost all planet spin in roughly same direction as orbit i.e., angle ("obliquity") between spin and orbit axes is *small* and so spin angular momentum vectors \vec{J} typically roughly aligned with orbit angular momentum \vec{L} i.e.: $\uparrow_{\text{orbit}}\uparrow_{\text{spin}}$

 \rightarrow another highly organized pattern demanding explanation

note: important exceptions do exist

- Venus: spin is retrograde ("upside-down") ↑_{orbit}↓_{spin}
- Uranus: sideways $\uparrow_{orbit} \rightarrow_{spin}$

www: planetary obliquities

 \rightarrow these too needs to be understood

Q

Surface Temperature

Measuring Temperatures

Q: How to measure planet surface temperatures? ...before visiting! have plan ahead to decide on wardrobe! hint-not Wien's law in simpleminded way! (consider blue Earth!)

Q: expectations from trends of T vs distance d from Sun?

iClicker Poll: Temperature and Planet Size

Consider two planets both at same distance d from Sun and identical (same composition, etc), *except* planet Huge is larger than planet Tiny: $R_{Huge} > R_{Tiny}$

Vote your conscience: Which planet is hotter?

they have the same temperature

Measuring Temperatures

key point: the visible light that lets you see the planet is not blackbody emission \rightarrow reflected sunlight but: there *is* black body emission at longer λ : infrared www: IR Moon, Mars

General trends: indeed, T drops with distance dbut less strongly than 1/d (*not* an inverse square law for T!) we would like to (and can!) understand in detail

Understanding Temperatures

- *Q*: what are sources of heating? of cooling?
- Q: what physical laws/conservation principles are important?
- $\stackrel{i}{\sim}$ Q: what sets planetary surface temperatures?

The Astrophysics of Planetary Temperatures

surface heating dominated by radiation '

(i.e., energy flow) from the Sun's emission, peaked at optical λ "geo" thermal (usually) small contribution (but large for Jupiter)

cooling also due radiation (blackbody emission, peaked at IR)

Note: Sun is steady source of light

i.e., constant luminosity = power = Wattage = L_{\odot} each planet constantly receives this radiation and also emits its own, according to its T

 \star planet $T \rightarrow$ constant value (in time),

★ set by an **equilibrium**:

incoming/outgoing energy flows exactly balance!

 $\tilde{\omega}$ Q: Why? What would happen if inflow > outflow? vice versa?

planetary energy flows (i.e., power or wattage W):

- W_{in} = absorbed sunlight energy: constant power flow in
- W_{out} = blackbody emission: strong increasing function of T

What if $W_{out} > W_{in}$? energy conservation \rightarrow planet has net energy loss \rightarrow suffers cooling \rightarrow reduces W_{out} if new $W_{out} > W_{in}$? still, then lather, rinse, repeat until $W_{out} = W_{in}$! equilibrium achieved!

What if $W_{out} < W_{in}$? can convince yourself: planet warms until $W_{out} = W_{in}$! equilibrium achieved in this case too!

lesson: all roads lead to equilibrium!

If Sun's emission steady, then planet T must go to steady value, set by energy-conserving balance: $W_{out} = W_{in}$

Plantary Temperatures Calculated

Can get excellent estimate of planetary T from (fairly) simple first-principles calculation!

key is energy (power) balance: absorption = emission diagram: sun, planet. label R_{\odot} , d, R

Absorption

15

recall: if surface of area S_{surf} emit flux F_{surf}

then radiated power = luminosity [energy/sec] is $L = F_{surf}S_{surf}$ Sun: $L_{\odot} = F_{\odot}S_{\odot} = 4\pi R_{\odot}\sigma T_{\odot}^{2}$ at planet, flux is $F = L/4\pi d^{2} = \sigma T_{\odot}^{4}(R_{\odot}/d)^{2}$ [energy/area/sec]

....but we know not all incoming sunlight is absorbed! *Q: Why not?*

Q: What substance would absorb all incident sunlight?

- Q: What substance would absorb no incident sunlight?
 - Q how could we simply quantify all of this?