> Astro 210
> Lecture 18
> October 6,2010

Announcements

* Guest Instructor again! Prof. Athol Kemball
- HW5 due next time

TA office hours tomorrow 10:30-11:30

- required Night Observing continues
check online for schedule and weather info download \& bring question sheet

Last time: Solar System Tour begins at home Geodynamics: theory of plate tectonics
Q: what are plates? connection with volcanos? earthquakes?

Earth's Atmosphere

Composition of Our Atmosphere
Percentage by Volume

N_{2}	77%
O_{2}	21%
$\mathrm{H}_{2} \mathrm{O}$	1%
Ar	1%

CO_{2}, Ne traces
atm density ρ, pressure varies $w /$ height h
\rightarrow airplanes are pressurized "for your comfort \& convenience" we can understand why!
assume

- ideal gas $P V=N k T \rightarrow P=N k T / V=\rho k T / m$
$m=$ mass of gas molecule
- $T=$ const (isothermal)

iClicker Poll: Forces on a Blob of Atmospheric Gas

Consider a blob of air in Earth's atmosphere, at rest
i.e., wind not blowing up, down, or sideways

How many forces are acting on this blob?

A zero

B only one

C more than one
consider: column of air at rest
column area A
sketch
slab of height $d h$ has mass
$d M=\rho d V=\rho A d h$
slab weight $F_{\mathrm{w}}=-g d M=-g \rho A d h$:
downward force, but doesn't fall!?

Q: why? gas has weight-why not all at our feet?
upward force
pressure: on bottom $P(h)$, on top $P(h+d h)$
sketch
net force

$$
\begin{aligned}
F_{\mathrm{p}} & =\Delta P \times A=[P(h+d h)-P(h)] A=A \frac{d P}{d h} d h \\
& =A k T / m \frac{d \rho}{d h} d h
\end{aligned}
$$

hydrostatic equilibrium: $F_{\text {weight }}=F_{\text {pressure }}$

* air pressure on you is weight of column of air above you!
$\Rightarrow-g \rho A d h=A k T d \rho / d h d h$
$\Rightarrow d \rho / \rho=-m g d h / k T$
$\checkmark \quad \Rightarrow \quad \rho(h)=\rho_{0} e^{-h / H}$
Q : so how high is the atmosphere?
"How high" is the atmosphere?
since the real atmosphere roughly obeys $\rho(h)=\rho_{0} e^{-h / H}$,
- no sharp cutoff, but smooth decline in density
- strictly, in exponential atm, $\rho(h)>0$ for all h
but a natural scale exists where ρ becomes small:
"scale height" $H=k T / m g$
as surface, $H \simeq 8 \mathrm{~km}, \rho_{0} \simeq 1 \mathrm{~kg} / \mathrm{m}^{3}$
$H \ll R_{\oplus} \rightarrow$ atm is thin layer www: atm
also: $P=\rho k T / m=\rho g H \propto \rho$, so
$P(h)=P_{0} e^{-h / H}$
$P_{0}=1$ atm $\simeq 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

の note: $H \propto 1 / m \rightarrow$ lighter particles higher

Craters

Craters caused by meteor/comet impact
\rightarrow explosion results
\rightarrow large energy release

Resulting features:

- circular "bowl" cleared out
- in larger craters, central peak ("rebound" of underlying rock)
www: the Moon
v Q: Why Moon's surface heavily cratered but Earth's not?

Why Moon's surface heavily cratered but Earth's not?
\triangleright small meteors burn in E's atmosphere
\triangleright erosion
\triangleright oceans hide some
\triangleright tectonic activity
\triangleright volcanos hide some

Some large objects do survive fall impact on surface
but erosion, geological activity quicly erases evidence www: Manicouagan, Canada crater
www: Clearwater lakes, also Canada
www: Tunguska, Siberia 1929; exploded in air 1908

Cosmic Calamity!

What killed the dinosaurs?
Meteor/comet impact
www: topographical map of Yucatan--note bull's eye
Yucatan crater: ~ 180 km
age (from radioactive ${ }^{40} \mathrm{~K}$ dating): 65 Myrs: when dinos died!
caused tidal wave
ignited fires

* stirred up dust - most important
\rightarrow raised albedo $A \rightarrow$ less sunlight absorbed
\rightarrow earth cooled
$\circ \Rightarrow$ plants, animals died

The Moon

Global Properties
$M=7.3 \times 10^{22} \mathrm{~kg}$
$R=1738 \mathrm{~km} \sim 1 / 4 R_{\text {earth }}$
$d_{\mathrm{EM}}=3.8 \times 10^{5} \mathrm{~km} \sim 60 R_{E}$
$\rho_{\text {avg }} \sim 3000 \mathrm{~kg} \mathrm{~m}{ }^{-3}$
\rightarrow not big metallic core
$g_{\mathrm{moon}}=G M / R^{2}=1.6 \mathrm{~m} / \mathrm{s}^{2} \simeq 1 / 6 g_{\mathrm{earth}}$

Tides

www: high/low comparison image
www: oneline data -- pick a beach to visit!

Q: what is tide period: high to high/low to low?
grav. force changes with distance \rightarrow tidal forces compare forces on mass m at different distances

$$
A B
$$

$F_{A}=G M m / r^{2} \quad F_{B}=G M m /(r+d)^{2}$
$F_{A}>F_{B}$ force tries to pull A and B apart
\rightarrow tidal force

$$
\begin{align*}
F_{\text {tide }} & =F_{A}-F_{B} \tag{1}\\
& =G M m\left(\frac{1}{r^{2}}-\frac{1}{(r+d)^{2}}\right) \tag{2}\\
& =G M m \frac{(r+d)^{2}-r^{2}}{r^{2}(r+d)^{2}} \tag{3}\\
& =G M m \frac{d(2 r+d)}{r^{2}(r+d)^{2}} \tag{4}
\end{align*}
$$

$\stackrel{\rightharpoonup}{N}$
if $d \ll r \Rightarrow F_{\text {tide }}=2 G M m \frac{d}{r^{3}}$

Earth in isolation

Earth in field of Moon
A feels strongest attraction
B feels average attraction
C feels weakest attraction
so: gravity acclerations $g_{C}<g_{B}<g_{A}$
relative to average $\Delta g=g-g_{B}$:

$$
\Delta g_{C}<0<\Delta g_{A}
$$

The Moon: Orbit

www: lunation animation: always same face!
www: far side
Always same side faces us!
demo: lunar globe

iClicker Poll: The Moon \& Spin

The Moon always keeps the same face to us
What is the Moon's spin period?

A zero! no spin!

B nonzero! spin period $<$ orbit period

C nonzero! spin period $=$ orbit period

D nonzero! spin period $>$ orbit period

Moon has $\omega_{\text {orb }}=\omega_{\text {spin }}$ exactly!
"corotation"

Why? Tidal interaction and friction
ex: ball rolling in bowl $F_{f} \neq 0$
after time: stopped $F_{f}=0$
\Rightarrow friction drives a system to a state in which frictional forces are no longer active

Earth \& Moon deformed by tidal forces
sketch
imagine $\omega_{\text {spin }}>\omega_{\text {orb }}$
Q: What is effect on Moon's surface?
Q: How will this change the spin \& orbit over time?

Tidal stresses on Moon \rightarrow Moon surface constantly deformed Deformed Moon non-spherical: tidal bulges
Earth gravity on bulges \rightarrow torque
increases Moon orbital angular momentum
repeated stretching/compression \rightarrow friction, heating
dissipation \rightarrow evolve to frictionless state:
reduces Moon spin angular momentum
until $\omega_{\text {spin }}=\omega_{\text {orb }}$

Note: may take long time!
complete for Moon, not for earth!

Earth $\omega_{\text {spin }}^{E}>\omega_{\text {orb }}$
sketch
Earth drags along tidal bulges
$F_{N}>F_{F}$

Two effects

1. slows earth spin (reduces ang. mom.)

$$
d P_{\mathrm{spin}} / d t \sim 1.6 \times 10^{-5} \mathrm{~s} / \mathrm{yr}=16 \mathrm{~s} / \mathrm{Myr}
$$

2. adds orbital ang. momentum to moon, (still circular) $\left(v_{c}=\sqrt{G M / R}\right.$ or $\left.\omega_{\mathrm{orb}}=v_{c} / R=\sqrt{G M / R^{3}}\right)$ net effect: earth-moon distance increases!
$d R / d t \sim 2.3 \mathrm{~cm} / \mathrm{yr}$
confirmed by laser ranging measurements! www: laser to Moon

Thus:

- moon recedes!
$\stackrel{\rightharpoonup}{\infty}$
- Moon closer in past!

