Astro 210 Lecture 19 October 8, 2010

Announcements

- Remember me?
- HW 5 due
- HW 6 available, due in class next Friday
- Night Observing continues next week

Last time: The Moon

Q: from Earth we only see one side of the Moon–why?

Q: on the Moon, how often does the Sun rise?

н

iClicker Poll: Earthrise from the Moon

As seen from the Moon, how often does the Earth rise?

- A every 1 Moon spin period
- B every 1 Earth year (Earth-Moon system orbit around Sun)
- C none of the above

The Moon

Global Properties

$$\begin{split} M &= 7.3 \times 10^{22} \text{ kg} \\ R &= 1738 \text{ km} \sim 1/4 \text{ } R_{\text{earth}} \\ d_{\text{EM}} &= 3.8 \times 10^5 \text{ km} \sim 60 R_E \\ diagram: Earth-Moon to scale \\ \rho_{\text{avg}} \sim 3000 \text{ kg m}^{-3} \\ \rightarrow \text{ not big metallic core} \end{split}$$

 $g_{\text{moon}} = GM/R^2 = 1.6 \text{ m/s}^2 \simeq 1/6 g_{\text{earth}}$

ω

The Moon: Surface Features

* highlands: lighter in color, heavily cratered
www: Apollo 17 in highlands (mountains made by impacts)

* maria - "seas" (singular: mare): dark plains
www: Mare Imbrium large scale
www: maria/highlands comparison
smooth: fewer craters, made of volcanic rock Q: how do we
know?
formed by lave flows

formed by lava flows

4

```
★ craters
cover surface
occur in all sizes, > 20km to microscopic
www: Mare Oriental
www: maria--overlapping craters
```

Right After the One Small Step

(Garbled) the surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers, like powdered charcoal, to the sole and sides of my boots. I only go in a small fraction of an inch, maybe an eighth of an inch, but I can see the footprints of my boots and the treads in the fine, sandy particles.

> Niel A. Armstrong July 20 1969 *Mare Tranquillitatis*—Sea of Tranquility

* "soil" regolith = "rock blanket"
www: footprint
www: Real Audio Armstrong--start at 3:35
dust, rock fragments
accumulated debris from many impacts

 \star other tips for tourists:

- \bullet no atmosphere \rightarrow no UV, X-ray protection
- slow rotation → long "days" huge day/night temp diff: 370K vs 125 K Q: why?

iClicker Poll: Lunar Cratering Patterns

highlands: lighter in color, heavily cratered maria smooth: significantly fewer craters

Why this difference?

1

- A highlands are younger surface than maria
- B maria are younger surface than highlands
- C highlands and maria same age, but maria are "lucky" regions not hit by impacts

Lunar Cratering and Solar System Impact History

highlands: lighter in color, heavily cratered maria smooth: fewer craters

Why the difference?

- ★ impactor bombardment random but same over all Moon large regions cannot "hide"
- * cratering differences immediately show maria younger!
- **★** combine with lunar rock composition (maria basaltic)
 - \rightarrow maria formed by lava flows due to large impacts
 - \rightarrow younger surface \rightarrow fewer craters

Implications

00

- violent impacts common in the past
- \bullet fewer impacts after maria formed \rightarrow bombardment has slowed
- can use cratering counts to deduce impact history
 - \Rightarrow huge bombardment rate initially

The Moon: Origin

Earth & Moon similar in composition of crust, different in core

- Fission model ("sparated at birth") : moon spun out from rapidly rotating earth
- Binary ("Sister") model earth and moon formed together as binary system
- Capture model
 "vagabond" moon gravitationally captured by earth
- giant impact model
 Moon created in collision of Mars-sized object with early Earth

Q: pros, cons of each?

Q

- Fission model ("sparated at birth") : unlikely: ang mom problem-Earth wouldn't rotate fast enough
- Binary ("Sister") model unlikely: where do differences come from?
- Capture model unlikely: where do similarities come from?
- giant impact model
- "least unlikely" accounts for both differences and similarities
- \rightarrow eary solar system a violent place!

Moon Wrapup

www: image comparison

Q: compare/contrast?

Venus

Properties

 M, R, ρ_{avg} Earth-like, "sister planet" \rightarrow probably very Earth-like initially now: hellish!

atmosphere: thick

mostly CO₂; clouds of concentrated sulfuric acid surface pressure $P_0 = 90$ atm = 90× Earth

surface T = 750 K = 380 C = 800 F; melts lead!

- www: Venera 9 & 10 comparison
- www: Venera 13 image
- Ianders lasted for $\sim 1-2$ hr, then got cooked found: flat rocks, basaltic soil \rightarrow volcanic activity

```
other evidence for "geo" logical activity on Venus:

www: Guinevere plains---stretching forces from mantle

www: Venus craters

crater counts similar to Earth-a few 100 Myr old

but no plates! Has to be resurfaced some other way, perhaps

active volcanism?

www: radar map: volcano lava flows?
```

Note: $T_{\text{surface}} \gg T(a_{\text{Venus}}) \approx 230 \text{ K}$ from our master equation \rightarrow i.e., much hotter than expected equilibrium avg Q: Why so hot?