Astro 210 Lecture 20 October 11, 2010

Announcements

- HW 6 due in class Friday
- last week for Night Observing! info and schedule online

Last time: Venus

- similar to Earth in size, mass, composition probably very similar at birth
- but now: hellishly hot
- $T_{\text{surface}} \gg T(a_{\text{Venus}}) \approx 230 \text{ K}$  from our master equation  $\rightarrow$  i.e., much hotter than expected equilibrium avg but our calculation only used energy conservation
- and properties of thermal radiation
- Q: Why so hot?

 $\vdash$ 

### **Greenhouse Effect**

basic idea: atmosphere traps thermal energy surface region at different T than top of atmosphere in HW6 you work this out in detail note: important for Earth and Mars too

Consider radiative energy flows
incoming: sunlight-visible wavelengths, atm transparent
Venus surface not dark!
outgoing: surface thermal (BB) emission: IR
but CO<sub>2</sub> in atm blocks IR, absorbs energy
⇒ atmosphere acts like blanket

Ν

# iClicker Poll: CO<sub>2</sub> and Surface Temperature

Imagine Sun's radiation and Venus orbit fixed but more  $CO_2$  added to Venus' atmosphere

What would be the effect on Venus' surface temperature  $T_s$ ?

A  $T_s$  stays the same







Venus: probably initially cooler, had liquid water(?) note-early Sun was 30% dimmer!

if so,  $CO_2$  dissolved in oceans, rocks note:  $CO_2$  in Earth rocks, oceans is enough for 70 atm! ...just like Venus!

Now imagine: watery Venus heated a bit *Q: What is effect of heating on atmosphere? on temperature?* 

```
if early water-bearing Venus heated, positive feedback loop:
Heat \rightarrow surface T \uparrow
\rightarrow Hall evan atm \rightarrow COa released as well
```

```
\rightarrow H_20 evap, atm \rightarrow CO_2 released as well
```

```
\rightarrow repeat until all H<sub>2</sub>O evaporated!
```

```
also: H_2O molecules lighter than CO_2
```

```
\rightarrow all H_2O evaporated
```

```
\rightarrow go to upper atm
```

```
\gamma + H_2O \rightarrow H + OH, H escapes
```

```
\Rightarrow water lost! – warming irreversible
```

```
\rightarrow runaway greenhouse effect
```

### Mars

Vital Statistics:  $R \simeq 1/2 R_{\text{Earth}}$   $M \simeq 10\% M_{\text{Earth}}$  $\rho_{\text{avg}} = 3900 \text{ kg/m}^3 < \text{Earth} \rightarrow \text{smaller core}$ 

atmosphere thin:  $P_0 \sim 1/200$  Earth atm  $\rightarrow$  liquid water cannot exist! sublimates, freezes composition: heavy species–95% CO<sub>2</sub>,  $\sim 2\%$  N<sub>2</sub>, Ar

- smaller mass  $\rightarrow$  more escape
- no ocean to absorb CO<sub>2</sub>

σ

```
surface temperature: T \sim 190-240 K polar caps: frozen water, CO<sub>2</sub>; cap sizes vary: seasons!
```

```
soil – iron rich (red color \rightarrow iron oxide=rust)
```

## Water on Mars

today: ice-polar caps, permafrost in soil

www: nuclear reaction cartoon

www: epithermal neutron map of Mars

but much evidence for liquid water in past!

```
www: outwash ''river delta''
```

- "arroyos" river-like channels (run downhill, show sandbars!)
- Martian meteorites: were wet when made
- Mars Global Surveyor: flat basin in N. hemisphere w/ "coastline" features

channels stop here  $\rightarrow$  ancient ocean?

- gullies-small but uneroded  $\rightarrow$  recent 2005-new gully created - confirms active flows
- Mars Phoenix Lander 2008: excavated trench exposed white material

gone after 1 day–right timescale for water ice  $\rightarrow$  vapor (sub-limiation)

### Life on Mars?

Water  $\rightarrow$  maybe life? No clear evidence

But: ancient Mars meteorite (discovered on Earth)
Q: how did it get here? how know it's Martian?
claimed to have fossil bacteria
www: microscopic image--bacteria-like figures?
→ perhaps life long ago?

*Q:* even if Mars had bacterial life–why is this a Big Deal?

# Jupiter

prototype for Jovian planets mass:  $M = 1.9 \times 10^{27}$  kg =  $0.1\% M_{\odot} \simeq$  sum of rest of planets radius: about 10  $R_{\text{Earth}}$  $\rho_{\text{avg}} \simeq 1,300$  kg/m<sup>3</sup>  $\ll \rho_{\text{rock}}$  for sure isn't rocky! composition: H 79%, He 20%, 1% other  $\rightarrow$  very similar to sun color: ammonia clouds

spin: rapid, 9hr 50min  $\rightarrow$  oblate ("M&M shape")  $\rightarrow$  atmospheric circulation!

www: Jupiter

high pressure regions: zones

low pressure regions: belts

Great Red Spot: long-lived storm

www: Red Spot

www: red spot animation

9

### **Jupiter Interior**

*transp: Jupiter cutaway* no solid surface!

gaseous atmosphere becomes incresingly dense until compressed liquid  $H_2$  (hi pressure) then liquid H metal, probably rocky core (differentiation of heavy elements)