Astro 210 Lecture 23 October 18, 2010

Announcements

- HW 7 due Friday
- Night Observing due Friday
- Night Observing raindates: tonight & tomorrow info and schedule online
- no class meeting Wednesday!

Last time: finished Solar System tour Pluto & Kuiper belt *Q: what's the connection?*

 \vdash

Origin of the Solar System

theory building! recall: geocentric/heliocentric theories...

Input solar system data, laws of physics

Output: Model sequence of events, predictions for evolution up to present

3-Minute Essay #2

List patterns in the solar system to be explained by a theory of solar system origin.

Include at least:

- one property common to all planets, and
- one property in which classes of planets differ.

Solar System Data to be Explained

orbits, spins

- planet orbits in ecliptic plane
- rough spin/orbit alignments
- but some spins misaligned

Terrestrial/Jovian differences:

composition

location

size

spacing

▹ debris: comets, asteroids

Theory of Solar System Origin: Protosolar Nebula

stars born in cold gas & dust clumps: molecular clouds *Q: what's dust, in astro context?* www: HST Eagle Nebula

Initial protosolar material a small parcel of larger cloud

• cold gas & dust

(п

• spinning: net angular momentum $\neq 0$ Q: why is $\vec{L} \neq 0$ a reasonable assumption?

For simplicity: imagine first a cold cloud with *zero* spin

i.e., *zero* angular momentum

Q: forces on particles in cloud?

Q: response of particles to these forces?

Q: why is coldness important for this to work?

Gravitational Collapse

ignoring spin:

particles in cold cloud feel forces of

- gravity
- thermal pressure

but if cloud is cold: T low, prssure $P = \rho kT/m_{\text{particle}}$ small \rightarrow only important force is gravity

diagram: cloud \rightarrow collapse gravity \rightarrow inward motion \rightarrow denser \rightarrow stronger gravity \rightarrow runaway! "gravitational collapse"

σ

Q: why doesn't collapse continue until all matter \rightarrow point?

iClicker Poll: Contraction of a Spinning Swarm

Consider a swarm of particles, spinning around an axis Which is easier?

- A moving a particle *parallel* to spin
 - \downarrow toward midplane
- B moving a particle *perpendicular* to spin
 - $\leftarrow \text{toward spin axis}$
- C both motions equally easy

7

Nebular Collapse: Birth of Sun and Disk

indeed, most matter compressed \rightarrow central "proto-Sun"

but real pre-stellar clouds are clumpy parts of larger nebulae \rightarrow turbulent motions

 \rightarrow clumps have random but nonzeror spins: $\vec{L}_{init} \neq 0$

spin \rightarrow axial but not spherical symmetry describe with cylindrical coordinates (r, θ, z)

→ collapse not spherical angular momentum "centrifugal barrier" along R, but not z \Rightarrow collapse easier along z \Rightarrow protoplanetary disk *diagram: disk*

disk \rightarrow planet & debris orbit planes, spin axes

 ∞

Protoplanetary Disk

protosolar material with highest angular momentum "spared" from going into Sun \rightarrow remains as orbiting disk disk ingredients: mostly H and He gas with "sprinkle" (~ 2% by mass) of microscopic dust disk motion: feels gravity of proto-Sun \rightarrow moves in Keplerian orbits non-circular velocity components \rightarrow 0 Q: why?

due to T drop with distance R from Sun: gas ρ , matter state (presence of ices) change with R Q: how? what physical effects important for ice formation?

disk velocities: matter interactions occur

with non-circular (i.e., radial) velocity components

- i.e., elliptical radial motions lead to collisions/heating: friction
- frictional drag forces drive radial motions to zero
- protosolar disk circularized \rightarrow low-eccentricity planet orbits

temperature gradients and disk structure

hotter near (proto)Sun, cooler farther away

 higher gas presser closer: gas disk "puffier" nearby what about solids? dust, ice?

key: condensation gas \rightarrow solid

- rocks, metals $T_{\rm cond} \sim 1000 2000$ K high!
- ice: $T_{\text{cond}} \sim 100 200 \text{ K low!}$

 $\stackrel{\scriptsize{ iny blue}}{=} Q$: so what does this mean for what kinds of solids form where?

water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer boundary!

- < R_{snow}: only dust (rocky material) can exist as a solid (no ice): limited raw material → small, rocky planets formed there
- > R_{snow} : lighter elements (water, CO₂) can also exist as a solid (along with dust)
- \rightarrow more raw material available \rightarrow larger protoplanets \Rightarrow origin of Jovian/terrestrial composition differences!