Astro 210 Lecture 24 October 22, 2010

Announcements

• HW 7 due

 \vdash

- Night Observing finished, report due
- good news: no new homework for next week bad news: Hour Exam 2 next week similar setup, format, as last exam www: exam info page

Last time: began theory of solar system origin

- starting point: "protosolar nebula"
 Q: what's protosolar? what's a nebula?
- gravitational collapse Q: what's that?
- angular momentum and disk formation Q: how does this work?

iClicker Poll: Fossils of the Protosolar Nebula

Which is/are "fossil(s)" of solar nebula disk formation?

- A all planets orbit planes are close to ecliptic plane
- B all planets move in the same direction
- C Venus spin is retrograde ↑_{orbit}↓_{spin}
- D both (a) and (b)

Ν

Theory of Solar System Origin: Executive Summary

stars born in cold gas & dust clumps: molecular clouds "gravitational collapse": runaway contraction

angular momentum: centrifugal barrier to collapse most matter \rightarrow proto-Sun high-angular momentum matter: protoplanetary disk around sun

gas ρ , matter state (presence of ices) change with R water/ice "snow" line at $R_{snow} \sim 3$ AU: Inner/Outer planet boundary!

Assembling the Planets: Challenges

Goal of Solar Nebula Theory:

- start with smooth, gas-dominated protosolar disk smoothly laced with with microscopic dust/ices
- explain physically-motivated steps leading to most of mass in planets, small remainder in debris and no remaining interplanetary gas

Q: what are available forces/influences? Q: which would be the first to act? which is most efficient in collecting mass into large bodies?

Forces/Interactions in the Protosolar Nebula

 gravity → everything attracts everything else advantages: "reaches out" over space democratic: affects gas and solids but: at the beginning, disk smooth, circular most gravitational forces due to Sun no large objects yet to pull in neighboring material → gravity will be crucial, but need large objects first

 \rightarrow must cross minimize size ''threshold'' first

СЛ

 collisional/sticking forces—atomic/solid state forces in solids solid particles collide, stick → make fewer, larger particles only effective in solids (dust/ice): not gas doesn't "reach out" –requires particles to touch initially dust/ice particles small—hard to "find" each other → slow acting: collisional effects set planet formation time

Protosolar Choreography

Phase I: Collisional solid particles (dust/ice) collide, stick → small solid bodies: "planetesimals" (like asteroids/comets)

gas as yet unaffected but acts as frictional drag on non-circular planetesimal motion

collisional processes continue until planetesimals massive enough \rightarrow gravity takes over

Phase II: Gravitational

big planetesimals attract small → accumulate mass
 → even stronger gravitational sources
 "the rich get richer"
 → fewer & larger objects: "protoplanets"

collisions \rightarrow spin tilts, craters, the Moon!

Q: once planetesimals/protoplanets gravitate effectively, how does this affect the gas in the disk?Q: what are effects as proto-Sun turns on and becomes bright? Outer Solar System (beyond snow line where ices exist): when core $\sim 10 M_{\rm Earth}$ gravity attracts, holds H, He gas mass grows even more rapidly

Inner Solar System (inside snow line) smaller cores (no ices), higher $T \rightarrow$ can't hold H, He masses remain small

leftover planetesimals:

 ∞

- rocky: asteroid belt
 Jupiter's gravity prevents planet formation
- icy: Kuiper belt, some ejected to Oort cloud

as proto-Sun brightens: remaining interplanetary gas heats \rightarrow if not captured by giant planets, then driven out of SS

Result: inner rocky planets, outer gas giants, debris!

Testing Solar System Origin

until recently, Solar Nebula theory had only one system to explain: us!

Now: Major new info on planet existence, birth around other stars

Q: what questions can only be answered by looking elsewhere?

Q: what questions can't be answered by looking elsewhere?

Q: what observable predictions does Solar Nebula theory make o for young stars, mature planet-bearing stars?

Testing Solar Nebula Theory

Now seeing planets, planet formation around other stars Solar Nebula theory should work generally \rightarrow should apply to these systems too

...though some details might vary Q: why?

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk
- 2. older protostars have planetesimal disk
- In fully-formed star and planet systems:
- 1. small planets near star
- 2. massive planets farther away
- 3. orbits nearly circular

10

Problem: solar nebula theory built to explain

one data point (SS)! \rightarrow is the model "fine-tuned"?

iClicker Twofer: Bets on Planet Formation

Vote your conscience!

Which prediction seem most solid to you?

- young protostars have gas disk
- B older protostars have planetesimal disk
- C small planets near star
 - massive planets farther away
- E planet orbits nearly circular

D

In same list: which prediction seems least solid?

Test I: Young Stars

evidence from direct imaging: 50% – 90% of youngest stars surrounded by gas disk disks are common and perhaps unavoidable!

- www: Orion HST montage
- www: protoplanetary disks in Orion
- www: Orion disks set of 4
- www: Orion disks side view (really disks)

disks thick, blocks light

- \rightarrow enough material to make planets
- \rightarrow agrees with Solar Nebula theory!

12

 \rightarrow good evidence for disk formation!

Debris Disks

Some older protostars and fully-formed have spectrum that has two peaks \rightarrow two temperatures

- optical emission from the hot surface of star, and
- infrared emission from dust in disk!

Recently (past decade): can image the disks in the infrared www: β Pic disk w/star

We see warm dust (but no gas)

- most emission from numerous small particles
- but probably much larger particles present some ambiguous evidence for this already
 ▷ lumpy, non-symmetric disks seen

 β Pic disk warped \rightarrow due to planet gravity

• recently: giant planet imaged around β Pic!

13

Solar Nebula Scorecard: Midterm Grades

General Predictions of Solar Nebula Theory

In forming stars (protostars):

- 1. young protostars have gas disk? check!
- 2. older protostars and fully formed stars have particle-bearing disk? check!

Solar Nebula Theory status: **Woo hoo!** so far so good! theory works up through disk formation how about planets themselves?