Astro 210 Lecture 27 October 27, 2010

Announcements Hour Exam 2 next time similar setup, format, as last exam www: exam info page Last time: exoplanets detection methods

- reflex motion Q: what's that? what does it tell you?
 www: simulations, data
 what doesn't it tell you?
- transits Q: what are they? what do they tell you?
 www: data

results so far *Q: planet properties? orbital properties?*

iClicker Poll: Exoplanet Non-Surprises

Of the following properties of exoplanets discovered by techniques available to date...

which should **not** come as a surprise?

that is, couldn't have been any other way

A most exoplanet masses are large: $M \approx M_{\text{Jupiter}}$

many exoplanets observed with large eccentricities e > 0.2

exoplanet semimajor axes not too large: $a \leq 6$ AU

Exoplanets: Trends and Mysteries

No Surprise: new planets are massive
⇒ needed to get big, observable velocity wobble
if not massive, could not have found!
selection effect: doesn't prove all planets massive
since couldn't find low mass with this technique
→ largeness of detected mass is statement about detection method,
not about planet properties

Big Surprise: very short periods found \rightarrow planets are **very** near stars! ex: τ Boo is 3.6 \times Jupiter mass, but closer than Mercury's orbit! nothing like our Jovian planets! "hot Jupiters"

4

www: exoplanet fraction vs heavy element content of host star Q: what does this mean?

Exoplanet Trends Continued

Role of heavy elements

- planets more common around stars with high levels of heavy elements ("metals")
- \rightarrow clues to formation...

Multiple-Planet Systems

• dozens multiple-planet systems seen thus far

Planet Sizes

- in transiting systems can find planet size around that of Jovian planets \rightarrow density < rocky, iron
- \rightarrow these are gas giants, not terrestrial!

σ

Exoplanet Trends Continued

Masses

more massive planets easier to find larger star reflex motions, larger transit eclipses \Rightarrow first discoveries all Jupiter mass or more but as techniques have improved, detect smaller masses many Saturn-mass, Neptune-mass objects found to date, recordholding low mass: $4.10M_{earth}$ with controversial claims of $1.94M_{earth}$

Atmospheres

atmospheres detected for a few planets \rightarrow only possible for close-in giants in transiting systems *Q: how would this work?* results:

δ

- "hot Jupiters" have gaseous atmospheres
- hydrogen, water vapor, sodium detected
- evidence for clouds, atmospheric circulation!

The Habitable Zone

habitable zone defined as: region around a star where planets can contain liquid water

Q: *is this a reasonable definition? alternatives?*

this month–candidate habitable zone planet: Gleise 581g
host star is not solar like, but low-mass "M dwarf"
5th planet found around star, via reflex motion
have to subtract wobble effects of other planets
but even more recently: competing group redid subtraction
not assuming circular orbits, no evidence for GL 581g!

Q: lessons?

Exoplanet Statistics

after searching nearby stars, can compare: stars with planets found via reflex motion vs total stars searched ratio gives fraction/percentage of planet-bearing systems

Results

★ about $\approx 10\%$ of solar-type stars have planets of masses (0.3 to 10) M_{Jupiter} and orbital period P = 2 - 2000 days

★ extrapolation of observed trends suggests about ≈ 20% of stars have gas giants at a ≤ 30 AU Q: what does this tell us? not tell us? possible biases?

 \odot

Q: what does all of this mean for solar nebula theory?

Extra-Solar Planets: Implications

Solar Nebla theory: giant planets born far from star Data: Giant exoplanets found very close ⇒ Theory is incomplete/wrong!

New Planets, New Questions:

1. Who is normal: them or us?

e.g., maybe SS is common, but others more likely to be found by this technique Note: current techniques can only now see Jupiter around nearby star using this method

9

2. What's up with the very close orbits?
Maybe some giant planets born close in? *Q: why would this be surprising?*Maybe some giant planets be born far, move in?
www: planet eating sketch
if so: what stops them from falling into star?

3. How to get large eccentricity?

exoplanets show no preference for circular orbits average exoplanet eccentricity > all solar system planets! Why no large e in SS?

Exoplanets: The Future

much excitement,

will play major role in Astrophysics in upcoming decade

just now operational:

www: NASA Kepler space mission, precision monitoring of thousands of stars for transits Q: why go to space to do this? hundreds of candidate planets found already will take time to check for "false positives" → major announcements expected soon

Anyway: planets common.

 \Rightarrow good news in search for life elsewhere...

11

Stay tuned!

Exam Review

- www: First Page: Equation list
- www: Sample Questions