> Astro 210
> Lecture 3
> Aug 27,2010

Announcements

- iClickers required starting today
- register your iClicker; link on course webpage
- HW1 available; due in class next Friday

Last time: Began gathering data \Rightarrow the naked-eye sky

- without distance info, 3-D universe flattened \rightarrow 2-D sky
- full sky: celestial sphere

Q: what is it? How is is "celestial"? Why is it a sphere?
Q: what is the motion of stars relative to each other? relative to the horizon?

Today: Motions of Sun, planets

Sun Motion

daily motion w.r.t. horizon: rise in east, set in west when at highest point: noon
fundamental measure of time: solar day
\Rightarrow interval from one noon to next (spin period)
maximum angular elevation varies with seasons
in Chambana:
~ June 21, summer solstice: 73.5 ${ }^{\circ}$
~March 20, Sept 23, equinoxes: 50°
~ Dec 22, winter solstice: 26.5°
\rightarrow variation has same period as seasons
yearly movement sun moves east w.r.t. fixed stars

- along a specific path: the ecliptic
a great circle (Q : what's that?) on celestial sphere passes through 12 constellations: zodiac

Q: how can we figure out observationally where sun is if can't see surrounding stars during the day?

Q: what does Sun's path on 2-D sky imply for 3-D nature of Earth-Sun motion?

Solar Motion on the Sky, and in Space

Zodiac known to ancients:
note changing pattern of constellations you can see at night and around sunrise/set; can work out where Sun is

More modern techniques now exist:
www: SOHO LASCO movie
ecliptic on sky is a great circle
i.e., intersection of sphere and plane which goes through sphere center
in 3-D space, earth-sun motion lies in a plane

- \Rightarrow the ecliptic plane

The Tilt

- Earth-Sun orbit axis \neq Earth spin axis
- ecliptic plane tilted w.r.t. celestial equator by 23.5°

WWW: ecliptic animation
Demo: with pen

- cel sphere axes fixed w.r.t. stars: polaris always $\sim N C P$
- 2nd fundamental measure of time:
year of seasons: Earth-Sun orbit period
Q: how about the Moon-motion? effects to be explained?

Moon Motions

daily: rises in east, sets in west
also: eastward motion w.r.t. fixed stars; through zodiac (close to ecliptic, but not exactly)
completes one orbit in ~ 27 days (rises about 49 min later each day)

Lunar phenomena:

- phases
- eclipses
a to understand, helps to appreciate relative scales

iClicker Poll: Earth vs Moon Sizes

Vote your conscience-all get credit!

If the Earth were the size of the globe, then which represents the proportional size of the Moon?

A softball

B baseball

C golf ball
v marble

iClicker Poll: Earth vs Moon Distance

If the Earth were the size of the globe, then
how far from the Earth should the Moon ball be?
Hint: the Moon's angular diameter is 0.5°

A arm's length

B front row

C middle row

D back row
∞
E Expresso Royale at Illini Union

Earth vs Moon: Scales

size: radii in ratio

$$
\begin{equation*}
\frac{R_{\text {Moon }}}{R_{\text {Earth }}} \approx \frac{1}{4} \tag{1}
\end{equation*}
$$

orbit distance:
we observe angular diameter $\theta=0.5^{\circ}$: small angle set by Moon diameter $D_{\text {Moon }}=2 R_{\text {Moon }}$ and distance $r_{\text {Moon }}$:

$$
\begin{aligned}
\left.\theta\right|_{\text {radians }} & \approx \frac{D_{\text {Moon }}}{r_{\text {Moon }}}=2 \frac{R_{\text {Moon }}}{r_{\text {Moon }}} \\
& =2 \pi \frac{0.5^{\circ}}{360^{\circ}} \text { radians } \approx 0.009
\end{aligned}
$$

and so $r_{\text {Moon }} \approx 220 R_{\text {Moon }} \approx 60 R_{\text {Earth }}$
if $R_{\text {globe }}=10 \mathrm{~cm}$, then $r_{\text {ball }} \approx 600 \mathrm{~cm}=6 \mathrm{~m}=18$ feet
Lesson: Moon is small, far away!
\rightarrow shadow easy to miss!

Phases of the Moon

diagram: phases as seen on sky

Q: what is basic physical origin of phases? Why do we sometimes
see only part of the Moon illuminated?
phases simple but beautiful
basic effect: see illuminated moon from different angles
phases not due to Earth blocking sunlight
i.e., phases are not eclipses!
diagram: top view, sky views
excellent exercise in translating situation in 3-D space
to 2-D projection on sky
for each Sun-Earth-Moon position, ask:
Q : how much of Moon's surface is illuminated by the Sun?
Q: how much of the illuminated portion can we see from Earth?
Q: what does this look like in the sky?

iClicker Poll: Moon Phase and Rise Time

Note: each phase rises and sets at a specific time of day

When does the 1st Quarter moon rise?

A noon

B 3 pm

C dusk

D midnight
$\stackrel{\text { N }}{n}$
E 3am
my suggestion: practice!
do the experiment in real life!
when moon up: point to moon, then sun, look at angle!
complete cycle of Iunar phases in 29.5 days
$\Rightarrow 3 r d$ fundamental measure of time: month of phases

Any questions?

