Astro 210
 Lecture 31
 November 8, 2010

Announcements

- HW 9 due in class Friday

Solar Observing last-chance raindates:
today, 10am-2pm
tomorrow, 10am-2pm

- schedule, report form online

Last time: how the Sun shines
and how we know this for sure

The Stars as Suns

We've proved that that Sun is nuclear reactor but (we'll see that) the Sun is a typical star
\Rightarrow all stars run by thermonuclear fusion

The Night sky, the Universe lit up ultimately by nuclear power

How do we know Sun is typical?
Compare!
www: big picture cartoon

STARS

iClicker Poll: Naked-Eye Stars

Vote your conscience!

On a clear night, outside of a city, about how many stars can you see with the naked eye?

A More than the number of people in a packed movie theater

B More than the number of people at a UI football game

C More than the population of Illinios

Stars: Brightness

to naked eye, in clear sky:
about 6000 (!) stars visible over celesital sphere
\Rightarrow about 3000 at any one night
...but this is just the "tip of the iceberg"
directly measure flux
Q: for old time's sake, remind me-what is flux?
ex: Sun: $F_{\odot}=1370 \mathrm{Wm}^{-2}$
Sirius ("dog star")

$$
\frac{F_{\text {Sirius }}}{F_{\odot}}=7.6 \times 10^{-11}
$$

tiny, but had to be-we know stars are much dimmer than Sun

iClicker Poll: Getting Sirius

flux comparison: Sirius vs the Sun
$F_{\text {Sirius }} / F_{\odot}=7.6 \times 10^{-11}$

Does this mean that Sirius is less luminous than the Sun?

A yes
B no

C can't tell from this information alone

Luminosity

recall: apparent brightness \neq luminosity!

- luminosity $=$ power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux $=$ power per unit area (at some observer location) units: power/area, e.g., Watts/m²

Apprent brightness and luminosity related by

$$
\begin{equation*}
\text { observer-dependent } F=\frac{L}{4 \pi r^{2}} \frac{\text { observer-independent }}{\text { observer-dependent }} \tag{1}
\end{equation*}
$$

inverse square law!
farther \leftrightarrow dimmer
hence brightness is "apparent" - depends on observer but L is intrinsic fundamental property of a star

Q: how measure star L ?

To find \star luminosities

1. Measure F
2. Measure d
3. solve: $L=4 \pi d^{2} F$
ergo: to compare wattage of stars, need distances!

Distances to Stars

a difficult, longstanding (ongoing!) problem today many techniques exist but technology good enough in last 2 centuries

Parallax - the "gold standard" of stellar distances Demo: thumb's up-arm's length, halfway
as Earth orbits, our viewpoint shifts (slightly!)
\rightarrow nearby \star s appear to move w.r.t. background $\star s$
measure: angular shift p
\bullet

Distances: Geometry and Units

trig technology: $d \tan p=1 \mathrm{AU}$
\Rightarrow distance $d=1 \mathrm{AU} / \tan p$
but p tiny! (≤ 1 arc sec $\left.\sim 10^{-5} \mathrm{rad} \ll 1\right)$
$\rightarrow \tan p_{\text {rad }} \approx p_{\text {rad }}$, so
$d=1 \mathrm{AU} / p_{\mathrm{rad}}$, or

$$
\begin{equation*}
d=\frac{1 \mathrm{pc}}{p_{\text {arcsec }}} \tag{2}
\end{equation*}
$$

where $p_{\text {arcsec }}$ is p in arc sec and $1 \mathrm{pc}=1$ parsec $=1 \mathrm{AU} /\left(1^{\prime \prime}\right)_{\mathrm{rad}}=3.086 \times 10^{16} \mathrm{~m}$
\rightarrow distance to a star with $p=1$ arc sec
occasionally use light year $=$ distance light travels in 1 yr
¿ $\mathrm{lyr}=c \times 1 \mathrm{yr}=9.5 \times 10^{15} \mathrm{~m}$
note: $1 \mathrm{pc}=3.26 \mathrm{lyr}$

Distances: Observations

typical parallactic shift is tiny (if observable at all!)
none even a large as 1 arc sec!!
Sirius: $p=0.366^{\prime \prime}$
$d=1 / 0.366 \mathrm{pc}=2.65 \mathrm{pc} \simeq 5 \times 10^{5} \mathrm{AU}$
nearest \star is α Centauri
at $1.3 \mathrm{pc}=4 \mathrm{lyr}$
note: even from nearest star, light takes 4 years to get here!

Lessons:

- 1 pc \sim typical distance between neighboring stars in our Galaxy (and others) www: 100 nearest stars
- parallax p tiny at best
\rightarrow measureable only for nearest stars
Q : what to do for more distant objects?

Star Brightness: Magnitudes

star brightness measured in magnitude scale magnitude $=$ "rank" : smaller $m \rightarrow$ brighter Sorry.

Magnitudes use a logarithmic scale:

- difference of 5 mag is factor of 100 in flux:
$m_{2}-m_{1}=-2.5 \log _{10} F_{2} / F_{1} \quad$ (definition of mag scale!)
- mag units: dimensionless! (but usually say "mag") because mags are logs of ratio o f two dimensionful fluxes with physical units like W / m^{2}

What is mag difference $m_{2}-m_{1}$:
Q: if $F_{2}=F_{1}$?
Q: what is sign of difference if $F_{2}>F_{1}$?
$Q:$ for equidistant light bulbs, $L_{1}=100 \mathrm{Watt}, L_{2}=50 \mathrm{Watt} ?$

Apparent Magnitude

a measure of star flux $=$ (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: m (Vega) $\equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot}=-26.74$

$$
\begin{aligned}
& \text { i.e., }-2.5 \log _{10}\left(F_{\odot} / F_{\mathrm{Vega}}\right)=-26.74 \\
& \text { so } F_{\text {Vega }}=10^{-26.74 / 2.5} F_{\odot}=2 \times 10^{-11} F_{\odot}
\end{aligned}
$$

- ex: Sirius has $m_{\text {Sirius }}=-1.45 \rightarrow$ brighter than Vega so: $F_{\text {Sirius }}=3.8 F_{\text {Vega }}=8 \times 10^{-11} F_{\odot}$
- ex: $m_{\text {Polaris }}=2.02$ Q: rank Polaris, Sirius, Vega?
* if distance to a star is known can also compute Absolute Magnitude
abs mag $M \equiv$ apparent mag if star placed at $d_{0}=10 \mathrm{pc}$

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude $M=$ apparent mag at $d_{0}=10$ pc
places all stars at constant fixed distance
\rightarrow a stellar "police lineup"
\rightarrow then differences in F only due to diff in L
\rightarrow absolute mag effectively measure luminosity

Sun: abs mag $M_{\odot}=4.76$ mag
Sirius: $M_{\text {Sirius }}=+1.43 \mathrm{mag}$
Vega: $M_{\text {Vega }}=+0.58 \mathrm{mag}$
Polaris: $M_{\text {Polaris }}=-3.58 \mathrm{mag}$
ϵ Eridani: $M_{\epsilon \text { Eri }}=+6.19 \mathrm{mag}$ (nearest exoplanet host; $d=3.2 \mathrm{pc}$)
Q : rank them in order of descending L ?
$\stackrel{H}{G}$
Immediately see that Sun neither most nor least
luminous star around

Distance Modulus

take ratio of actual star flux vs "lineup" flux at abs mag distance $d_{0}=10 \mathrm{pc}$:

$$
\begin{equation*}
\frac{F}{F_{0}}=\frac{L / 4 \pi d^{2}}{L / 4 \pi d_{0}^{2}}=\frac{d_{0}^{2}}{d^{2}} \tag{3}
\end{equation*}
$$

so we have

$$
\begin{equation*}
m-M=-2.5 \log \left(\frac{F}{F_{0}}\right)=-2.5 \log \left(\frac{d_{0}}{d}\right)^{2}=5 \log \left(\frac{d}{10 \mathrm{pc}}\right) \tag{4}
\end{equation*}
$$

- depends only on distance d, not on luminosity! can use as measure of distance
- $m-M \equiv$ "distance modulus"

