Astro 210 Lecture 31 November 8, 2010

Announcements

 \vdash

• HW 9 due in class Friday

Solar Observing last-chance raindates:

today , 10am-2pm
tomorrow , 10am-2pm
▷ schedule, report form online

Last time: how the Sun shines and how we know this for sure

The Stars as Suns

We've proved that that Sun is nuclear reactor but (we'll see that) the Sun is a typical star \Rightarrow all stars run by thermonuclear fusion

The Night sky, the Universe lit up ultimately by nuclear power

How do we know Sun is typical? Compare!

www: big picture cartoon

iClicker Poll: Naked-Eye Stars

Vote your conscience!

On a clear night, outside of a city, about how many stars can you see with the naked eye?

- A More than the number of people in a packed movie theater
- B More than the number of people at a UI football game
- С
- More than the population of Illinios

Stars: Brightness

to naked eye, in clear sky: about 6000 (!) stars visible over celesital sphere ⇒ about 3000 at any one night ...but this is just the "tip of the iceberg"

directly measure **flux** *Q: for old time's sake, remind me–what is flux?*

ex: Sun: $F_{\odot} = 1370$ W m⁻² Sirius ("dog star")

$$\frac{F_{\rm Sirius}}{F_{\odot}} = 7.6 \times 10^{-11}$$

С

tiny, but had to be-we know stars are much dimmer than Sun

iClicker Poll: Getting Sirius

flux comparison: Sirius vs the Sun $F_{\text{Sirius}}/F_{\odot} = 7.6 \times 10^{-11}$

Does this mean that Sirius is less luminous than the Sun?

can't tell from this information alone

σ

Luminosity

recall: apparent brightness \neq luminosity!

- luminosity = power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux = power per unit area (at some observer location) units: power/area, e.g., Watts/m²

Apprent brightness and luminosity related by

observer-dependent
$$F = \frac{L}{4\pi r^2} \frac{\text{observer-independent}}{\text{observer-dependent}}$$
 (1)
nverse square law!
Farther \leftrightarrow dimmer
hence brightness is "apparent" – depends on observer
out *L* is intrinsic fundamental property of a star

Q: how measure star L?

~

To find ***** luminosities

- 1. Measure F
- 2. Measure d
- 3. solve: $L = 4\pi d^2 F$

ergo: to compare wattage of stars, need distances!

Distances to Stars

a difficult, longstanding (ongoing!) problem today many techniques exist but technology good enough in last 2 centuries

Parallax – the "gold standard" of stellar distances Demo: thumb's up–arm's length, halfway

as Earth orbits, our viewpoint shifts (slightly!) \rightarrow nearby \star s appear to move w.r.t. background \star s measure: angular shift p

Distances: Geometry and Units

trig technology: $d \tan p = 1$ AU \Rightarrow distance d = 1 AU/tan pbut p tiny! (≤ 1 arc sec $\sim 10^{-5}$ rad $\ll 1$) $\rightarrow \tan p_{rad} \approx p_{rad}$, so d = 1 AU/ p_{rad} , or

$$d = \frac{1 \text{ pc}}{p_{\text{arcsec}}} \tag{2}$$

where p_{arcsec} is p in arc sec and 1 pc = 1 **parsec** = 1 AU/(1")_{rad} = 3.086 × 10¹⁶ m \rightarrow distance to a star with p = 1 arc sec

occasionally use **light year** = distance light travels in 1 yr 5 lyr = $c \times 1$ yr = 9.5×10^{15} m note: 1 pc = 3.26 lyr

Distances: Observations

```
typical parallactic shift is tiny (if observable at all!)
none even a large as 1 arc sec!!
Sirius: p = 0.366''
d = 1/0.366 pc = 2.65 pc \simeq 5 \times 10^5 AU
```

```
nearest \star is \alpha Centauri
at 1.3 pc = 4 lyr
note: even from nearest star, light takes 4 years to get here!
```

Lessons:

- 1 pc \sim typical distance between neighboring stars in our Galaxy (and others) www: 100 nearest stars
- parallax p tiny at best
 - \rightarrow measureable only for nearest stars
 - *Q*: what to do for more distant objects?

11

Star Brightness: Magnitudes

```
star brightness measured in magnitude scale
magnitude = "rank" : smaller m \rightarrow brighter
Sorry.
```

Magnitudes use a logarithmic scale:

difference of 5 mag is factor of 100 in flux:

 $m_2 - m_1 = -2.5 \log_{10} F_2 / F_1$ (definition of mag scale!)

 mag units: dimensionless! (but usually say "mag") because mags are *logs* of *ratio* o f two dimensionful fluxes with physical units like W/m²

What is mag difference $m_2 - m_1$:

Q: *if* $F_2 = F_1$?

 $\stackrel{i}{\sim}$ Q: what is sign of difference if $F_2 > F_1$? Q: for equidistant light bulbs, $L_1 = 100$ Watt, $L_2 = 50$ Watt?

Apparent Magnitude

a measure of star flux = (apparent) brightness

- no distance needed
- arbitrary mag zero point set for convenience: historically: use bright star Vega: $m(Vega) \equiv 0$ then all other mags fixed by ratio to Vega flux
- ex: Sun has apparent magnitude $m_{\odot} = -26.74$ i.e., $-2.5 \log_{10}(F_{\odot}/F_{Vega}) = -26.74$ so $F_{Vega} = 10^{-26.74/2.5}F_{\odot} = 2 \times 10^{-11}F_{\odot}$
- ex: Sirius has $m_{Sirius} = -1.45 \rightarrow \text{brighter than Vega}$ so: $F_{Sirius} = 3.8F_{Vega} = 8 \times 10^{-11}F_{\odot}$
- ex: $m_{\text{Polaris}} = 2.02 \ Q$: rank Polaris, Sirius, Vega?
- 13

* if *distance* to a star is known
 can also compute Absolute Magnitude

abs mag $M \equiv$ apparent mag if star placed at $d_0 = 10 \text{ pc}$

Q: what does this measure, effectively?

Absolute Magnitude

absolute magnitude M = apparent mag at $d_0 = 10 \text{ pc}$

places all stars at constant fixed distance

- \rightarrow a stellar "police lineup"
- \rightarrow then differences in F only due to diff in ${\it L}$
- \rightarrow absolute mag effectively measure luminosity

```
Sun: abs mag M_{\odot} = 4.76 mag
Sirius: M_{\text{Sirius}} = +1.43 mag
Vega: M_{\text{Vega}} = +0.58 mag
Polaris: M_{\text{Polaris}} = -3.58 mag
\epsilon Eridani: M_{\epsilon \text{Eri}} = +6.19 mag (nearest exoplanet host; d = 3.2 pc)
Q: rank them in order of descending L?
```

^ដ Immediately see that Sun neither most nor least luminous star around

Distance Modulus

take ratio of actual star flux vs "lineup" flux at abs mag distance $d_0 = 10$ pc:

$$\frac{F}{F_0} = \frac{L/4\pi d^2}{L/4\pi d_0^2} = \frac{d_0^2}{d^2}$$
(3)

so we have

$$m - M = -2.5 \log\left(\frac{F}{F_0}\right) = -2.5 \log\left(\frac{d_0}{d}\right)^2 = 5 \log\left(\frac{d}{10 \text{ pc}}\right) \quad (4)$$

- depends only on distance d, not on luminosity!
 can use as measure of distance
- $m M \equiv$ "distance modulus"

16