Astro 210 Lecture 32 November 10, 2010

Announcements

- HW 9 due next time
- Solar Observing report due next time

Last time: Stars

- parallax Q: what's that? what's it good for? limitations?
- magnitude scale

apparent magnitude measures flux

 $m = -2.5 \log_{10}(F/F_{\text{Vega}})$

smaller $m \rightarrow larger F$

absolute magnitude measures luminosity

 $M = -2.5 \log_{10} [F(10pc)/F_{Vega}] = -2.5 \log_{10} L + const$ smaller $M \rightarrow larger L$

н

Star Color

Recall: color related to Temperature colder: redder; hotter: bluer www: objective prism spectra

very useful to *quantify* color!

 could try spectrum peak λ_{max} – but often, absorption lines → non-blackbody spectrum also: full spectrum from spectrometer "expensive" → have to collect more light since spread out

Q: what's a cheaper way to get color information from an image? Note: imaging detectors are CCDs

 $^{\rm N} \rightarrow \ \dot{} democratically''$ count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
⇒ use filter which accepts light
only in a range of wavelengths: "passband"

www: filter wheel

 $F_B \rightarrow m_B = B$: blue band, centered around $\lambda \approx 440$ nm $F_V \rightarrow m_V = V$: "visual", yellowish, $\lambda \approx 550$ nm ...and many others www: filter λ ranges

images in multiple filters \leftrightarrow crude spectrum

 $_{\omega}$ Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands

"color index" $B - V = 2.5 \log F_V/F_B + const \rightarrow ratio of fluxes$ Fix const: B - V = 0 for star with T = 10,000 K (e.g., Vega) index measures T!www: color and spectra

ex: www: Orion Betelgeuse reddish, $B-V=1.5;~T\sim3300$ K Rigel bluish, $B-V=-0.1;~T\sim12,000$ K

4

Mass

Most important parameter of a star!

Q: why is stellar mass hard to determine?

Q: when/how can mass be measured?

For single stars: mass determination difficult, very indirect

But can find masses for **binary** systems: two stars orbiting common center of mass *diagram: orbits*

measure P, r_1 , r_2 get m_1 , m_2 from Newton's version of Kepler's 3rd law

$$m_1 + m_2 = \frac{4\pi^2}{G} \frac{r^3}{P^2} \tag{1}$$

and $m_1/m_2 = r_1/r_2$

• problem: must measure r's Q: how?

visual binary

can see both stars!
www: visual binary orbit

eclipsing binary

 $\overline{}$

stars pass in front of each other can see in light curve: diagram: light curve \rightarrow get rs from timing of eclipses

spectroscopic binary

periodic Doppler shifts in spectrum see $\Delta \lambda_1$, $\Delta \lambda_2$ \rightarrow radial velocity $v_r/c = \Delta \lambda/\lambda_0$ then $v_1 = r_1 \omega = 2\pi r_1/P$ can solve for r!

iClicker Poll: Stellar Luminosity and Mass

Vote your conscience!

How are a star's luminosity and mass related?

A directly: larger $M \rightarrow$ larger L

B inversely: larger $M \rightarrow$ smaller L


```
for many stars find M, L \rightarrow \text{plot!}
www: M \text{ vs } L -- beware! logarithmic axes
```

for "normal" stars ("main sequence") i.e., in hydrogen-burning phase, not dying there is a simple, clear correlation

mass-luminosity relation (main sequence):

$$L \propto M^4 \tag{2}$$

where M is now mass, not magnitude! Note: this is a rough approximation, not accurate for $M \gtrsim 4M_{\odot}$

 $_{\circ}$ Q: what is L of $0.5M_{\odot}$ star?

iClicker Poll: Stellar Lifetime

Stars of which mass live longer $-1M_{\odot}$ or $0.5M_{\odot}$?

- A $1M_{\odot}$: higher $M \rightarrow$ more fuel
- **B** 0.5 M_{\odot} : lower $L \rightarrow$ longer to "burn out"
- C effects cancel: lifetimes roughly equal

Stellar Lifespans

From M and L get lifespan τ since energy conservation gives

$$E = L \quad \tau \tag{3}$$
 energy supply (fuel) = burn rate lifespan (4) thus: $\tau = E/L$

but $E \propto M$: hydrogen mass is thermonuclear fuel

- $\tau = E/L \propto M/M^4 = M^{-3}$
- using solar values $\tau_{\odot} = \tau(M_{\odot}) = 10^{10}$ yr, get

$$\tau = 10^{10} \operatorname{yr}\left(\frac{1M_{\odot}}{M}\right)^3 \tag{5}$$

- $\stackrel{\vdash}{\vdash}$ high mass \leftrightarrow high luminosity \leftrightarrow short life
 - low mass ↔ low luminosity ↔ long life

Stellar Lifetimes: Implications

Some Facts:

• stellar ("main sequence") mass-lifetime relation:

$$au = 10 \text{ billion yr} \left(\frac{1M_{\odot}}{M}\right)^3$$
 (6)

- age of Sun and solar system: $t_{SS} = 4.5$ billion yr
- age of the Universe (we'll find): $t_0 = 13.7$ billion yr

Q: what's the lifespan of a $0.5M_{\odot}$ star? implications? Q: what's the lifespan of a $10M_{\odot}$ star? implications?

Imagine (for simplicity) that:

- our Galaxy has formed stars at a constant rate throughout the age of the Universe (oversimplified!)
- [™] Q: what would this mean for the population of Galactic stars today?