> Astro 210
> Lecture 32
> November 10,2010

Announcements

- HW 9 due next time
- Solar Observing report due next time

Last time: Stars

- parallax Q : what's that? what's it good for? limitations?
- magnitude scale
apparent magnitude measures flux
$m=-2.5 \log _{10}\left(F / F_{\text {Vega }}\right)$ smaller $m \rightarrow$ larger F
absolute magnitude measures luminosity
$M=-2.5 \log _{10}\left[F(10 \mathrm{pc}) / \mathrm{F}_{\text {Vega }}\right]=-2.5 \log _{10} \mathrm{~L}+\mathrm{const}$ smaller $M \rightarrow$ larger L

Star Color

Recall: color related to Temperature
colder: redder; hotter: bluer
www: objective prism spectra
very useful to quantify color!

- could try spectrum peak $\lambda_{\max }$ - but often, absorption lines \rightarrow non-blackbody spectrum also: full spectrum from spectrometer "expensive" \rightarrow have to collect more light since spread out

Q: what's a cheaper way to get color information from an image?
Note: imaging detectors are CCDs
$N \rightarrow$ 'democratically" count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
\Rightarrow use filter which accepts light only in a range of wavelengths: "passband"
www: filter wheel
$F_{B} \rightarrow m_{B}=B$: blue band, centered around $\lambda \approx 440 \mathrm{~nm}$
$F_{V} \rightarrow m_{V}=V$: "visual", yellowish, $\lambda \approx 550 \mathrm{~nm}$
...and many others
www: filter λ ranges
images in multiple filters \leftrightarrow crude spectrum
ω Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands
"color index"
$B-V=2.5 \log F_{V} / F_{B}+$ const \rightarrow ratio of fluxes
Fix const: $B-V=0$ for star with $T=10,000$ K (e.g., Vega)
index measures T !
www: color and spectra
ex: www: Orion
Betelgeuse reddish, $B-V=1.5 ; T \sim 3300 \mathrm{~K}$
Rigel bluish, $B-V=-0.1 ; T \sim 12,000 \mathrm{~K}$

Mass

Most important parameter of a star!

Q: why is stellar mass hard to determine?

Q: when/how can mass be measured?

For single stars:
mass determination difficult, very indirect

But can find masses for binary systems:
two stars orbiting common center of mass
diagram: orbits
measure P, r_{1}, r_{2}
get m_{1}, m_{2} from Newton's version of Kepler's 3rd Iaw

$$
\begin{equation*}
m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{r^{3}}{P^{2}} \tag{1}
\end{equation*}
$$

and $m_{1} / m_{2}=r_{1} / r_{2}$

の problem: must measure r's Q: how?

visual binary

can see both stars!
www: visual binary orbit
eclipsing binary
stars pass in front of each other
can see in light curve:
diagram: light curve \rightarrow get r s from timing of eclipses
spectroscopic binary
periodic Doppler shifts in spectrum
see $\Delta \lambda_{1}, \Delta \lambda_{2}$
\rightarrow radial velocity $v_{r} / c=\Delta \lambda / \lambda_{0}$
then $v_{1}=r_{1} \omega=2 \pi r_{1} / P$
can solve for r !

iClicker Poll: Stellar Luminosity and Mass

Vote your conscience!

How are a star's luminosity and mass related?

A directly: larger $M \rightarrow$ larger L

B inversely: larger $M \rightarrow$ smaller L

C no strong dependence: L nearly constant for all M
for many stars find $M, L \rightarrow$ plot!
www: M vs L-- beware! logarithmic axes
for "normal" stars ("main sequence")
i.e., in hydrogen-burning phase, not dying
there is a simple, clear correlation
mass-luminosity relation (main sequence):

$$
\begin{equation*}
L \propto M^{4} \tag{2}
\end{equation*}
$$

where M is now mass, not magnitude!
Note: this is a rough approximation, not accurate for $M \gtrsim 4 M_{\odot}$

Q: what is L of $0.5 M_{\odot}$ star?

iClicker Poll: Stellar Lifetime

Stars of which mass live longer $-1 M_{\odot}$ or $0.5 M_{\odot}$?

A $\quad 1 M_{\odot}$: higher $M \rightarrow$ more fuel

B $0.5 M_{\odot}$: lower $L \rightarrow$ longer to "burn out"
C effects cancel: lifetimes roughly equal

Stellar Lifespans

From M and L get lifespan τ
since energy conservation gives

$$
\begin{align*}
E & = & L & \tau \tag{3}\\
\text { energy supply }(\text { fuel }) & = & \text { burn rate } & \text { lifespan } \tag{4}
\end{align*}
$$

thus: $\tau=E / L$
but $E \propto M$: hydrogen mass is thermonuclear fuel

- $\tau=E / L \propto M / M^{4}=M^{-3}$
- using solar values $\tau_{\odot}=\tau\left(M_{\odot}\right)=10^{10} \mathrm{yr}$, get

$$
\begin{equation*}
\tau=10^{10} \operatorname{yr}\left(\frac{1 M_{\odot}}{M}\right)^{3} \tag{5}
\end{equation*}
$$

\because - high mass \leftrightarrow high luminosity \leftrightarrow short life

- low mass \leftrightarrow low luminosity \leftrightarrow long life

Stellar Lifetimes: Implications

Some Facts:

- stellar ("main sequence") mass-lifetime relation:

$$
\begin{equation*}
\tau=10 \text { billion } \operatorname{yr}\left(\frac{1 M_{\odot}}{M}\right)^{3} \tag{6}
\end{equation*}
$$

- age of Sun and solar system: $t_{\mathrm{SS}}=4.5$ billion yr
- age of the Universe (we'll find): $t_{0}=13.7$ billion yr

Q: what's the lifespan of a $0.5 M_{\odot}$ star? implications?
Q: what's the lifespan of a $10 M_{\odot}$ star? implications?

Imagine (for simplicity) that:

- our Galaxy has formed stars at a constant rate throughout the age of the Universe (oversimplified!)
Q : what would this mean for the population of Galactic stars today?

