Astro 210 Lecture 32 November 10, 2010

Announcements

• HW 9 due

 \vdash

- Solar Observing due
- next week's homework computer-based pick one of two:

for the theory-inclined: simulate a star for the observation-inclined: cosmology data analysis

• Hour Exam 2: not forgotten! Grader (=yours truly) is slow, apologizes.

Last time: stellar mass

- related to luminosity: $L \propto M^4$
- lifespan vs mass: $\tau \propto M^{-3}$

Stellar Lifetimes: Implications

Some Facts:

• stellar ("main sequence") mass-lifetime relation:

$$\tau = 10 \text{ billion yr} \left(\frac{1M_{\odot}}{M}\right)^3$$
 (1)

- age of Sun and solar system: $t_{SS} = 4.5$ billion yr
- age of the Universe (we'll find): $t_0 = 13.7$ billion yr

Implications:

- $\tau(0.5M_{\odot}) = 80$ billion years \gg age of Universe! \rightarrow all such stars ever born remain alive today!
- $\tau(10M_{\odot}) = 10$ million years \ll age of U., SS \rightarrow most such stars have come and gone!
 - \rightarrow any massive stars seen today were recently born

Ν

So as our Galaxy makes stars

- low-mass stars live "forever" (but are dim)
- high-mass stars die quickly
- → expect mostly low masses (in a fair sample) but beware bias – rare, luminous stars easier to see example of "selection effect"

Theory Building: Stellar Life Cycles

Q: what is involved in making a model of a star's life?

for example, consider a model of the Sun's life

- Q: what physics goes in?
- *Q*: what data needed as inputs and/or checks on model outputs?
- Q: what kind of predictions can such a solar model make?

The Life and Death of a $1M_{\odot}$ Star

Evolution of a $1M_{\odot}$ **Star: Birth**

protostar

raw material: H, He, dust (heavy elements)
in cold molecular cloud
www: Eagle Nebula

'free fall'' collapse most material \rightarrow protostar nonzero angular momentum \rightarrow protoplanetary disk (see solar system origin notes)

protostar contracts \rightarrow heats

- core $T \uparrow$ until hot enough for nuclear reactions to turn on, then
- H burning starts: heat supply
- gas pressure maintainted
- \bullet hydrostatic equilibrium achieved \rightarrow star stabilized

0

$1M_{\odot}$ Star Mid-Life: "Main Sequence"

"main sequence" = burn H \rightarrow He in core

most of a star's lifespan spent in this phase

Q: how does star core change in composition during this time? *Q:* how will the Sun respond to this change?

Evolution of the Sun's Luminosity

in star core: $H \rightarrow He$ "burning" \rightarrow over time: H "fuel" \rightarrow He "ash" \rightarrow fuel supply goes down e.g., today, Sun's core < 50% H!

how does core respond to H depletion?

- still need to generate nuclear energy
- but with less fuel, have to burn hotter
- \rightarrow core T goes up
- \rightarrow star responds by *increasing* L!
- $_\infty$ Today: sun \sim 50% brighter than at birth!

iClicker Poll: A Helium-Core Sun

What happens when all core H converted to He?

- B the Sun's core contracts
- C the Sun begins to burn helium

the Sun ignites unburnt hydrogen outside core

$1M_{\odot}$ Star: Old Age

after core H exhausted

- core cools \rightarrow loses pressure support core can't maintain hydrostatic equilibrium
- core contracts!
- H material overlying core aslo contracts, heats new fuel, can begin to burn!

 \rightarrow H burning in ''shell'' around core

- \rightarrow L \uparrow
- outer layers ("envelope") of star expands

 \rightarrow cools: $T\downarrow$

red giant

The Dense Core

core \rightarrow high density ρ contraction slowed by Pauli exclusion principle \rightarrow quantum law: can't put 2e's in same state

```
at high densities:

quantum "degeneracy" pressure resists compression

like in ordinary solids

pressure P_{\text{degen}} = K \rho^{5/3}

depends only on \rho, not T \ (\neq \text{ideal gas!})
```

structure: degenerate core, H-burning shell, envelope

```
core heats \rightarrow He fusion ignites
normal gas: T \uparrow, P \uparrow \rightarrow expand \rightarrow cool
degen. gas: T \uparrow, P const: no exp, cool:
\rightarrow reaction speedup \rightarrow explosion!
<u>helium flash</u> (few min)
but note: occurs deep in star \rightarrow hidden by envelope!
```

```
after flash: core He burning {}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma
```

```
ash \rightarrow fuel!
```

similar to H-burning (main seq) but hotter, faster burn most red giants in this phase

12

Q: what happens when core He exhausted?

$1M_{\odot}$ Star: Death Throes

```
ultimately, core runs out of <sup>4</sup>He
now 2 shells: H- and He- burning
unstable! \rightarrow thermal pulses
(every 10<sup>3</sup> yrs, for a few yrs)
expel mass in "superwind"
hot ejected gas \rightarrow "planetary nebula"
```

www: HST planetary nebulae

hot core exposed! \rightarrow cools rapidly star core is exposed as bare "cinder" supported by degeneracy pressure (electrons)

• very hot, but

13

- very compact \rightarrow small
- \Rightarrow becomes white dwarf

White **Dwarfs**

"stellar corpse" supported by degenerate electrons eq. of state:

$$P = K\rho^{\gamma} \begin{cases} \gamma = 5/3 & \text{``low density''} \\ \gamma = 4/3 & \text{high density}\rho \gg 10^9 \text{ kg/m}^3 \end{cases}$$
(2)

HW:
$$P \sim GM^2/R^4$$

combine with $P = K\rho^{\gamma} \sim K(M/R^3)^{\gamma}$:
for pressure to balance gravity:

$$\frac{GM^2}{R^4} \sim \frac{KM^{\gamma}}{R^{3\gamma}} \tag{3}$$

Low density white dwarfs: $\gamma = 5/3$ $GM^2/R^4 \sim KM^{5/3}/R^5$ $\Rightarrow R \propto M^{-1/3}$ Mass increases \rightarrow radius decreses!