Astro 210 Lecture 34 November 15, 2010

Announcements

 this week's homework computer-based pick one of two:

for the theory-inclined: simulate a star

for the observation-inclined: cosmology data analysis

Last time: life and death of a $1 M_{\odot}$ star

Q: what are the two longest phases in a $1M_{\odot}$ star's life?

Q: what causes the final end?

Q: what are the end products? what happens to them afterwards?

White Dwarfs

"stellar corpse" — leftover after $1 M_{\odot}$ star death and for other low-mass stars too; see below

nearby example: Sirius B

www: X-ray image

- $M = 0.96 M_{\odot}$
- $R = 0.0084R_{\odot} = 0.8R_{\text{Earth}}!$
- $\rho = (M/R^3)\rho_{\odot} \approx 2 \times 10^6 \rho_{\odot} = 2 \times 10^9 \text{ kg/m}^3!$ $\Rightarrow 1 \text{ cm}^3 \text{ contains 2 tons!}$ **compact!** ultradense!

White Dwarf Structure

white dwarf not an ideal gas supported by degenerate electrons \rightarrow ultradense solid equation of state:

$$P = K\rho^{\gamma} \begin{cases} \gamma = 5/3 & \text{``low density''} \\ \gamma = 4/3 & \text{high density} \rho \gg 10^9 \text{ kg/m}^3 \end{cases}$$
 (1)

HW: you showed hydrostatic equilib gives $P \sim GM^2/R^4$ \Rightarrow use this to eliminate P, relate M and R

Low density white dwarfs: $\gamma = 5/3$ $GM^2/R^4 \sim KM^{5/3}/R^5$ $\Rightarrow R \propto M^{-1/3}$

Mass increases \rightarrow radius decreases!

High density white dwarfs: $\gamma = 4/3$

for pressure to balance gravity: $GM^2/R^4 \sim KM^{4/3}/R^4$

 $\Rightarrow M \sim (K/G)^{3/2}$!

mass is indep of R, ρ ! numerically:

$$M = M_{\mathsf{Chandra}} = 1.4 M_{\odot}$$

"Chandrasekhar limit!"

Q: what if white dwarf has $M < M_{Chandra}$?

Q: what if white dwarf has $M > M_{\text{Chandra}}$?

if high-density WD has $M < M_{\rm Chandra}$ then pressure (more than) enough to balance gravity \rightarrow WD is stable against collapse

but: if high-density WD has $M>M_{\rm Chandra}$

then pressure not enough to balance gravity

- \rightarrow gravity force not balanced
- \rightarrow star unstable \rightarrow collapses under its own weight!
- \rightarrow catastrophe!

conclusion: Chandrasekhar mass is maximum mass of white dwarfs!

Confirmed! All observed white dwarfs have $M < M_{\rm Chandra}$

Testing Stellar Evolution

recall: evolution depends on mass

thus far: looked in detail at $1M_{\odot}$ evolution

now need to know: how do other stars evolve?

iClicker Poll: Lifestyles of the Stars

Consider two stars, with masses $M_{\rm lo}$ and $M_{\rm hi}$ such that $M_{\rm lo} < M_{\rm hi}$

How do their lifestyles (luminosity L, lifespan τ) compare?

- M_{hi} is **less** luminous, and has a **sorter** lifespan
- M_{hi} is **less** luminous, and has a **longer** lifespan
- M_{hi} is more luminous, and has a sorter lifespan
- \neg D M_{hi} is more luminous, and has a longer lifespan

Beyond $1M_{\odot}$: Low-Mass Stars

```
since \tau=10^{10}~{\rm yr}/m^3 long lifetime if m<1M_\odot \tau=14~{\rm Gyr}={\rm age~of~universe~for~}m\sim0.9M_\odot \to if m lower, "live forever"
```

for $m \lesssim 0.08 M_{\odot}$, core too cool to burn H "brown dwarfs"

Q: what (if any) is heat source? how does star evolve?

Bottom line:

not much going on with low-mass stars but (by number) most stars are low-mass high-mass stars are rare...but spectacular...

Lives and Deaths of Stars

a star's life history, death controlled by it mass

$M < 0.9 M_{\odot}$

history like that of the Sun to date burn H → He lifetime > age of universe: live "forever" i.e., none have yet died

$0.9M_{\odot} < M < 8M_{\odot}$

history like that of the Sun life: burn $H \rightarrow He$ ("main sequence" phase) then "giant" phase burning $He \rightarrow C$ death: eject > 50% of mass as enriched gas—"planetary nebula" leave behind compact object: white dwarf

 $M > 8M_{\odot}$

history begins like Sun, but then very different...

Evolution of High Mass Stars

high mass: $M>8M_{\odot}$ (approximate—low mass limit not precisely known) initially: burn H \rightarrow He: "main sequence" phase

after core H gone:

- contract, ignite core He → C burning
- shell H burning: outer layers expand to supergiant

www: HST Betelguese

Mass large \rightarrow gravity strong \rightarrow core T large can and do burn carbon, heavier elements

increasing rapid cycles:

core contraction \rightarrow heating \rightarrow ignition \rightarrow burning

 $C+He \rightarrow O$

 $O+He \rightarrow neon$

... up to iron

ash \rightarrow fuel: cosmic recycling!

outside core:

- onion-skin structure develops
- previous phases "remembered" in shell burning
- the star's structure recapitulates its history!

www: pre-SN structure

core burning (fusion): makes ever heavier elements phases ever hotter, faster but this can't go on forever

when core is iron (Fe)
nuclear physics: iron is most stable nucleus
→ fusion with iron endothermic and not exothermic

Q: what does this mean?

Fe fusion endothermic:

→ Fe can't be fuel! inert!

when core is Fe:

- fusion stops
- core solidifies: iron white dwarf forms!

but immediately outside of iron core shell burning of silicon \rightarrow iron

- → core mass increases
- \rightarrow this is a losing game!
- Q: why? what happens?

Massive Stars: The End

Star structure:

- inert (non-burning) iron core
- supported against gravity by quantum motion of degenerate electrons (i.e., a white dwarf = solid)
- but shell burning keeps increasing core mass

but recall: white dwarfs have maximum mass! eventually: $M_{\rm Core} > M_{\rm Chandra}$: gravity overwhelms degeneracy pressure star finally loses lifelong struggle against gravity!

Catastrophic results:

- → core collapses!
- \rightarrow speeds $\sim 10\%c!$
- → overlying layers lose support, collapse too

Supernova Explosions (Type II)

Gravitational Collapse

core compression to tiny volume!

→ nuclei "touch": nuclear density

very hard to compress more!

core \rightarrow giant atomic nucleus, supported by nuclear force

infalling envelope "bounces" off stiff core ejected at high speed (up to 10% c)

→ supernova explosion

Demo: AstroBlaster

one supernova briefly as luminous as a Galaxy of stars

www: SN 1994D

Q: what's left after explosion? what are the leftovers like?

Supernova Debris

supernova ejects > 90% of star's initial mass

Ejecta are:

- 1. hot
- 2. fast-up to 10%c
- 3. enriched with products of nuclear burning heavy elements (e.g., O, iron)

www: Cas A Chandra image