Astro 210 Lecture 36 November 19, 2010

Announcements

- Computational Project due now
- HW 10-the final homework!-available, due Friday after break
- Hour Exam 2 back today; solutions posted

Last time:

1

supernova outcomes

- superheated, element-rich gas
- compact remnant

neutron stars and pulsars

- *Q*: what's a neutron star?
- Q: what's a pulsar?

Neutron star escape speed: $v_{esc} \approx c/3!$

 \rightarrow strong gravity \rightarrow Newton fails! \rightarrow Big AI to the rescue

iClicker Poll: Computer Project

Which project did you do?

- A I am the Master of White Dwarfs!
- B I am the Surveyor of the Cosmos!
- С
- Bad week! I bailed out this time around!

Gravitation Revisited

Newton gravity force law

$$F_{\rm grav} = \frac{GMm}{r^2} \tag{1}$$

implies that if M moves and so r changes:

 \rightarrow gravity force changes instantaneously over all space! ''signal'' of motion instantaneously transmitted throughout the universe

Einstein sez: this is totally illegal! an unmitigated disaster! no signal-including gravity-can move faster than c!

Einstein's Equivalence Principle:

in a closed room, no experiment can distinguish
 (non-gravitational) acceleration vs gravity
 Q: explain ball drop-Earth's surface vs accelerating rocket?

But by equivalence principle: must find same result due to gravity, so: * gravity bends light rays gravitational lensing

Q: what if shine light from basement to attic?

Gravitational Redshifting

Also: in accelerating spaceship:

 \star shine light from basement to attic

spacecraft & attic speed increases during light travel

 \rightarrow attic observer seed light <code>redshifted</code>

similarly, basement observer sees attic light *blueshifted*

Gravitatinal Redshift

(п

And there's more: redshift = decrease in light frequency fbut f = 1/P, light wave oscillation period so redshift $\rightarrow P$ increases but light oscillations are like clock ticking, so...

Gravitational Time Dilation

clocks in basement appear to run slow
 when viewed from attic!
 and attic clocks appear fast when viewed from basement!

in fact, attic clocks faster by $\Delta t = t_{\text{attic}} - t_{\text{basement}} = g\Delta h/c^2$

time "warping" due to gravity:
"gravitational time dilation"
gravity influences "flow" of time!

σ

Q: how to test these effects in real world?

Light Bending: The Sun

In principle: *all* gravitating objects bend light including you, me, the earth...In practice: need strong gravity source to create effect large enough to observe

Einstein (1915) devised first test: the Sun

- Sun's gravity deflects starlight rays diagram: paths
- the stronger the gravity along the path the bigger the deflection

...in fact, bending angle $\alpha = 4GM_{\odot}/R_{closest}c^2$

 \Rightarrow biggest effect for starlight just ''grazing'' edge of Sun

- \neg Q: why is this technically challenging to see?
 - *Q*: how to get around the problem?

1919 Eclipse: Give it up for Big Al!

Problem: Sun's glare obscures surrounding starlight Solution: block glare with eclipse!

1919: total solar eclipse in Southern hemisphere
expedition led by Sir Arthur Eddington
* starlight bent! Woo hoo!
* relativistic gravity confirmed!
* Einstein an instant celebrity
www: NYTimes headlines

Now tested many times, and very accurately seen in clusters of Galaxies www: HST gravitational lens Abell 2218

00

• all starlight bending experiments confirm Einstein!

General Relativity

Einstein's gravity: General Relativity

Newton: matter causes force (gravity) → particles follow curved lines in "flat" (Euclidean geometry) space

Einstein: bold leap, rejected Newton matter causes spacetime to be "curved" → particles follow straight lines ("geodesics") in curved space

^o space and time dynamic not fixed once and for all

Black Holes

Laplace (1790's) recall: escape velocity $v_{esc} = \sqrt{2GM/R}$ HW 3: What if star has M, R with $2GM/c^2R > 1$? then $v_{esc} > c$! light cannot escape! \rightarrow black hole

Wrong argument (Newtonian gravitaion) ...but right answer!

```
in death of M > 30 M_{\odot}^*: gravity wins collapse unstoppable black hole formed \Rightarrow inevitable part of star formation
```

10

*Exact "threshold mass" for SN \rightarrow BH uncertain

Black Hole Properties

any object of any mass M can (in principle) become a black hole!

size: Schwarzschild radius

$$R_{\rm Sch} = \frac{2GM}{c^2} \tag{2}$$

radius also provides BH "recipe":

- crush object M smaller than $R_{Sch} \rightarrow get BH!$
- example: for mass of Sun $R_{\rm Sch}=2GM_\odot/c^2=$ 3.0 km but actual $R_\odot=7\times10^6~{\rm km}$

 \rightarrow the Sun is not a black hole! (whew!)

• for mass of Earth: $R_{Sch} = 1$ cm!

11

The Black Hole Horizon

Why call R_{Sch} the BH radius? nothing is there!

True, but: R_{Sch} marks "point of no return" horizon: surface enclosing the BH i.e., horizon is surface of sphere w/ radius R_{Sch}

horizon is one-way "membrane" once inside $r \leq R_{Sch}$ nothing can escape...even light! cosmic roach motel!

Hence:

no light escapes \rightarrow black

```
but nothing else moves as fast \rightarrow nothing else escapes \rightarrow hole
```

12

Life Near a Black Hole

Experiment: lower astronaut (Jodie) near R_{Sch} we are at mission control, far away ($r_{us} \gg R_{Sch}$) communicate w/ light signals

when viewing photons (or clock ticks) emitted at r_{em} , observed at r_{obs} general rule:

$$\frac{\Delta t_{\rm obs}}{\Delta t_{\rm em}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm em}} = \sqrt{\frac{1 - R_{\rm Sch}/r_{\rm obs}}{1 - R_{\rm Sch}/r_{\rm em}}}$$
(3)

What do we see?

13

obs=us: $r_{obs} \rightarrow \infty$; em=Jodie: $r_{em} > R_{Sch}$ • Jodie's watch: $\Delta t_{obs} / \Delta t_{em} = 1 / \sqrt{1 - R_{Sch} / r_{em}} > 1$ $\rightarrow \Delta t_{obs} > \Delta t_{em}!$ appears to tick slow! time dilation! • wavelengths: $\lambda_{obs} > \lambda_{em}!$ redshift! *Q: and Jodie?*

What does Jodie see?

intuitively: expect inequalities to reverse...and they do obs=Jodie: $r_{obs} > R_{Sch}$; em=us: $r_{em} \rightarrow \infty$:

- our watches: $\Delta t_{\rm obs}/\Delta t_{\rm em} = \sqrt{1-R_{\rm Sch}/r_{\rm em}} < 1$
 - $\rightarrow \Delta t_{\rm obs} < \Delta t_{\rm em}!$ appears to tick fast!
- wavelengths: $\lambda_{obs} < \lambda_{em}!$ blueshift!

When Jodie returns:

then $r_{\rm em} = r_{\rm obs}$

- $\Delta t_{obs} = \Delta t_{em}$: her watch ticks at same rate as ours!
- but the *elapsed time* is shorter on her watch and so she is younger than her twin!

Special Pre-Break iClicker Poll

How far from this room will you be on Thanksgiving?

rthanks <	< 10	miles
	r thanks <	$r_{ m thanks} < 10$

- 10 miles $< r_{\text{thanks}} < 100$ miles
- C 100 miles $< r_{\text{thanks}} < 1000$ miles

 $r_{\rm thanks} > 1000$ miles

15

Go forth, eat well, have fun, get rest, return safely!